SUNDAY (5 TH AUGUST)		
17.00	17.00 Registration starts (open during entire event)	
18.00-20.00	Get together	

	MONDAY (6 TH AU	GUST)
8.45-9.00	Opening Ceremony (I. Grzegory)	
9.00-10.40	Plenary Session 1	
	PS1 (chair: Y Nanishi)	
9.00-9.50	Anniversary Lecture: S. Porowski – Is the phase diagram of GaN anomalous in respect	
	to other tetrahedrally bonded semicondu	ctors? (plenary) PS1.1
9.50 - 10.40	S. Nakamura - LED and Laser Diodes (plen	nary) PS1.2
10.40-11.10	Coffee break	
11.10-12.50	Plenary Session 2	
	PS2 (chair: T. Suski)	
11.10-12.00	H. Amano – Transformative Electronics Ba	ased on GaN and Related Materials for
	Realizing Sustainable Smart Society (plena	
12.00-12.50	Z. Sitar - AlGaN - a semiconductor that na	
13.00-14.00	Lunch break	, , , , , , , , , , , , , , , , , , ,
14.00-16.00	Parallel sessions: Growth and Characteri	zation & Optoelectronic Devices
	Mo1 - G&CH (chair: J. Suda)	Mo2 - OPTO (chair: V. Jmerik)
14.00-14.30	H. Fujikura - HVPE as A New Tool for	H. Hirayama - Recent progress of AlGaN
	Homo-Epitaxial Growth of Highly-Pure	deep-UV LEDs by increasing light-
	and Thick GaN Drift Layers for Power	extraction efficiency (invited) Mo2.1
	Devices (invited) Mo1.1	
14.30-15.00	Ke Xu - Growth of GaN substrate by	S. Hagedorn - Influence of AlN/sapphire
	HVPE, progress and challenge (invited)	substrate properties on growth and
	Mo1.2	performance of AlGaN-based UV LEDs
		(invited) Mo2.2
15.00-15.30	T. Sochacki - Recent progress in HVPE-	Y. Park - 375-nm Optically Pumped Vertical-
	GaN growth on ammonothermally	Cavity Surface-Emitting Lasers with Air-
	grown GaN seeds (invited) Mo1.3	Gap/Al0.05Ga0.95N Distributed Bragg
4		Reflectors (invited) Mo2.3
15.30-15.45	T. Baker - HVPE Growth of Free-Standing	J. Enslin - Growth of InAlGaN for efficient
	GaN Wafers by Interlayer Separation	UVB light emitting diodes Mo2.4
15.45-16.00	Mo1.4 Qiang Liu - Study of Low Cost Growth of	Yuh-Renn Wu - Three Dimensional
13.43-10.00	Large Size Bulk GaN Crystal Growth by a	Simulation on the Transport and Quantum
	New Vertical HVPE Reactor with	Efficiency of UVC-LEDs with Random Alloy
	Showerhead Nozzle Mo1.5	Fluctuations Mo2.5
16.00-16.30	Coffee break	
16.30-18.30	Parallel sessions: Growth and Characteri	zation & Optoelectronic Devices
	Mo3 - G&CH (chair: H. Fujioka)	Mo4 - OPTO (chair: R. Dupuis)
16.30-17.00	Y. Kumagai - Thermodynamics on HVPE	V. Jmerik - Plasma-assisted molecular
	of group-III nitrides (invited) Mo3.1	beam epitaxy of monolayer-thick GaN/AIN
		heterostructures for high efficient sub-250-
		nm UV emitters (invited) Mo4.1
17.00-17.15	T. Schneider - Defect and stress	Y. Itokazu - UVC LEDs on AlN/sapphire
	engineering in GaN layers grown by high	templates prepared by high-temperature
	temperature vapor phase epitaxy Mo3.2	annealing and regrowth process Mo4.2

17.15-17.30	N. Takekawa - Excess Chlorine and	C. De Santi - Investigation of the Thermal
	Growth Temperature Effects of N-Polar	Droop in InGaN-based Layers and UVA LEDs
	GaN Growth via Tri-halide Vapor Phase	Mo4.3
	Epitaxy and its Theoretical Study Mo3.3	
17.30-17.45	I. Gamov - Carbon-doped GaN:	M. A. Khan - Investigation of crystallinity
	Identification of tri-carbon defects	and current injection issue in 310nm-
	formed at substantial fraction Mo3.4	AlGaN UVB LED grown on AlN template in
		LP-MOVPE Mo4.4
17.45-18.00	F.C. Beyer - Photoluminescence of	M. Jo - UVC emission from (11-22) AlGaN
	Carbon-doped HVPE GaN layers Mo3.5	quantum wells grown by metal-organic
		chemical vapor deposition Mo4.5
18.00-18.30	J. Freitas – A new method to achieve	18.00-18.15 P. Michałowski - Oxygen-
	efficient iron doping of HVPE GaN	induced high diffusion rate of magnesium
	substrates (invited) Mo3.6	dopant in GaN/AlGaN based UV LED
		heterostructures Mo4.6

TUESDAY (7 TH AUGUST)		
8.30-10.30	Parallel sessions: Growth and Characteria	zation & Optoelectronic Devices
	Tu1 - G&CH (chair: H. Murakami)	Tu2 - OPTO (chair: D. Jena)
8.30-9.00	S. Chichibu - Acidic ammonothermal	S. Rajan - Tunnel Junctions for Next
	growth of GaN (invited) Tu1.1	Generation III-Nitride Optoelectronics
		(invited) Tu2.1
9.00-9.30	M. Zajac - Basic ammonothermal growth	G. Muziol - Long-living laser diodes grown
	of GaN (invited) Tu1.2	by plasma assisted molecular beam epitaxy (invited) Tu2.2
9.30-9.45	K. Endo - Fabrication of GaN Crystals	N. Chery - Structural Investigation Of
9.30-9.43	with Low Threading Dislocation Density	InGaN/GaN Heterostructures Quantum
	as well as Low Resistivity Grown with	Wells For Long Wavelength Emission Tu2.3
	Thin-Flux-Growth Method in Na-flux	
	Point Seed Technique Tu1.3	
9.45-10.00	T. Yamada - Reduction of Li impurity in	K. Hiraiwa - AllnN/GaN DBRs for Long-
	the Freestanding GaN Substrate	wavelength GaN-based VCSELs Tu2.4
	Fabricated by the Na-Flux Sapphire	
	Dissolution Technique Tu1.4	
10.00-10.15	N. Takeda - The effect of undissolved	S. Ishimoto - Improvement of emission
	carbon on GaN crystal growth in Na flux method Tu1.5	efficiency in green LEDs by sputtered AIN
10.15-10.30	Zionglang Liu - Growth of GaN Single	buffer layer Tu2.5 E. Iliopoulos - Kinetic Mechanisms of
10.13-10.30	Crystal by Na Flux Method Adding	InGaN(0001) by RF-MBE in the entire
	Nitrogen-doped Carbon Tu1.6	composition range: Phenomenological
		Model and Impact on Epilayer Properties
		Tu2.6
10.30-11.00	Coffee break	
11.00-13.00	Parallel sessions: Growth and Characteris	
	Tu3 - G&CH (chair: H. Miyake)	Tu4 - ELECTRO (chair: T. Palacios)
11.00-11.30		
	with high electron mobility by MBE	on Bulk GaN Substrates (invited) Tu4.1
11.30-12.00	(invited) Tu3.1 J. Han - Stacking-fault-free (20-2-1) GaN	J. Suda - Electrical characterization of
11.50-12.00	on 4" sapphire substrates: a pathway to	homoepitaxial GaN layers for GaN vertical
	commercialize semipolar	power devices (invited) Tu4.2
	optoelectronics (invited) Tu3.2	, , , , , , , , , , , , , , , , , , , ,
12.00-12.15	S. Walde - MOVPE grown AIN on nano-	Y. Tokuda - Characterization of Shallower
	patterned sapphire substrates with	Level Traps in p-GaN Grown by MOVPE
	different offcut angles Tu3.3	Using Low Frequency Capacitance DLTS
		Tu4.3
12.15-12.30	R. Mantach - Semi polar (10-11) GaN	K. Kanegae - Accurate estimation of H1 trap
	growth on silicon-on-insulator	concentration in n-type GaN layers Tu4.4
	substrates for defect reduction and melt	
12.30-13.00	back etching suppression Tu3.4	T Narita Danor states of carbon in a time
12.50-13.00	M. Sarzynski - InGaN quantum structures on patterned substrates	T. Narita - Donor states of carbon in p-type GaN grown by MOVPE (invited) Tu4.5
	(invited) Tu3.5	Gaiv grown by MOVPE (IIIVILEU) 144.5
13.00-14.00	Lunch break	
14.00-16.30	Parallel sessions: Growth and Characterize	zation & Theory
	Tu5 - G&CH (chair: R. Collazo)	Tu6 - THEORY (chair: J. Majewski)
	, ,	

14.00-14.30	C. Hartmann - On the preparation of AIN single crystal boules and substrates, and	Y. Kangawa - Theoretical study: Impurity incorporation in GaN MOVPE (invited)
	subsequent epitaxy for AlGaN devices	Tu6.1
	(invited) Tu5.1	
14.30-15.00	H. Miyake - Homoepitaxy of AlN on	S. Krukowski - Adsorption at nitride
	annealed AlN/sapphire template	semiconductors surfaces - electronic
	(invited) Tu5.2	aspects: surface states occupation, the equilibrium pressure, growth and doping
		(invited) Tu6.2
15.00-15.15	I Gamov - Di-carbon defects in AlN bulk	T. Ito - A Simple Theoretical Approach to
	crystals grown by physical vapor	Growth Mode of III-Nitride Thin Films Tu6.3
	transport Tu5.3	
15.15-15.30	H. Sun - Tuning the growth of AIN	K. Ohkawa - AlGaN MOVPE Growth
	epilayers on Al2O3 via TMAl preflow by MOCVD Tu5.4	Simulation under 10-100 kPa Considering Polymer formation Tu6.4
15.30-15.45	H. Yoshida - Controlling the growth	A. Kusaba - Relationship between the CH4
15.50 15.45	mode and strain of AIN grown directly on	Adsorption Probability and the C Impurity
	6H-SiC(0001) substrate by metal-organic	Concentration in the Polar-GaN MOVPE
	chemical vapor deposition Tu5.5	System Tu6.5
15.45-16.00	H. Zhang - Hot-wall MOCVD growth of N-	P. Kempisty - Contribution of first principles
	polar AlN nucleation layer on C-face	phonon calculations to thermodynamics
	vicinal and on-axis SiC substrates Tu5.6	analysis of GaN surfaces Tu6.6
16.00-16.15	K. Uesugi - Crystal quality improvement	J. Endres - Kinetic Monte Carlo simulation
	of sputter-deposited AIN films on SiC	of MOVPE growth/sublimation of GaN on
	substrates by high temperature annealing Tu5.7	the vicinal GaN(0001) substrate Tu6.7
16.15-16.30	M. Fijalkowski - Growth of thick AlGaN	P.Strak - Catalytic potential of AlN(0001)
	layers by HVPE method on GaN seeds	surface for N2 + H2 ammonia synthesis
	Tu5.8	reaction Tu6.8
16.40-17.40	Tutorial session	
	TS (chair: L. Kirste)	
16.40-17.10	L. Grieger - Williamson-Hall Analysis on Ep	ilayers – A critical review of common practice
	(invited) TS1	
17.10-17.40	M. Leszczyński - X-ray Diffraction in Nitride Technology- most common mistakes and	
	new opportunities (invited) TS2	
18.00-21.00	Poster Session (chair: M. Bockowski)	

WEDNESDAY (8 TH AUGUST)		
8.30-10.10	Plenary Session 3	
	PS3 (chair: I. Grzegory)	
8.30-9.20	Y. Mori - Recent Progress of GaN Growth by Na-flux Method (plenary) PS3.1	
9.20 – 10.10	C.G. Van de Walle - Acceptors in nitride	es: doping, compensation, and impact on
	device performance (plenary) PS3.2	
10.10-10.30	Coffee break	
10.30-13.00	Parallel sessions: Characterization & The	
	We1 - CH (chair: M. Leszczynski)	We2-THEORY (chair: S. Krukowski)
10.30-11.00	L. Kirste - Defect Structure Analysis of	A. Toropov - Optical properties of 1ML
	GaN Substrates by Synchrotron X-Ray	GaN in AlN: what happens beyond the
	Diffraction Techniques (invited) We1.1	envelope function approach (invited)
11.00-11.30	R. Oliver - Multi-microscopy of defects in	We2.1 K. Shiraishi - First Principles and
11.00-11.30	nitride semiconductors (invited) We1.2	Thermodynamic Studies on GaN MOVPE
	minde semiconductors (minted) well.2	Processes (invited) We2.2
11.30-12.00	P. Ruterana - Spontaneous formation of	D. Irving - Compensation in Si-doped AIN:
	quantum wells, ordering and	Mechanisms and opportunities (invited)
	composition fluctuations in (11-22)	We2.3
	semipolar AlGaN/GaN heterostructures	
	grown by plasma enhanced MBE	
	(invited) We1.3	
12.00-12.15	Y. Yao - Observation of Dislocations in	Y. Inatomi - A theoretical model for
	AIN Single Crystal by Using Synchrotron	carbon incorporation during step-flow
	X-Ray Topography, Etch Pit Method and	growth of GaN by MOVPE We2.4
	Transmission Electron Microscope We1.4	
12.15-12.30	Lok Yi Lee - Investigation of Stacking	M. Wierzbowska- Perovskite Solar Cells
	Faults in Zincblende GaN Grown on 3C-	with n-type GaN Electrodes We2.5
	SiC on Si templates with TEM and XRD	,·
	We1.5	
12.30-12.45	K. Shida - Nanobeam X-ray Diffraction	12.30-13.00 A. Jamroz - Morphology and
	Analysis of Local Lattice Distortions in	Electronic Structure of Carbon Doped
	the Growth Direction of a Modified Na-	Hexagonal Boron Nitride (invited) We2.6
	Flux GaN Bulk Crystal We1.6	
12.45-13.00	J. Stranska-Matejova - Strain relaxation	
	in InGaN/GaN epilayers by formation of	
	V-pit defects: XRD experiments and	
13.00-14.00	numerical simulations We1.7 Lunch break	
14.00-14.00	Excursion	
19.30-22.00	Gala Dinner	
19.30-22.00	טמומ שווווכו	

	THURSDAY (9 TH AU	GUST)
9.00-11.00	Parallel sessions: Electrical Devices & Cha	aracterization
	Th1- ELECTRO (chair: T. Anderson)	Th2 - CH (chair: M. Kamińska)
9.00-9.30	T. Palacios - GaN Nanostructures (or how	T. Tanikawa - Two-photon-excitation
	to Take Transistor Linearity to new	photoluminescence and its recent
	Levels) (invited) Th1.1	progress (invited) Th2.1
9.30-10.00	D. Jena - Growth, Physics, and	A. Tanaka - Observation of Dislocation
	Applications of Tunneling Nitride Structures (invited) Th1.2	Propagation in GaN on GaN Structure with a Multiphoton Excitation
	Structures (milited) This.2	Photoluminescence Microscope (invited)
		Th2.2
10.00-10.15	Z. Feng - High Reliability and Frequency	10.00 - 10.30 M. Sumiya - Evaluation of
	Performances of InAIN/GaN HFETs Th1.3	Structural Disorder and In-Gap States of
10.15-10.30	R. Tanaka - Demonstration of GaN	III-V nitrides by Photothermal Deflection
	vertical double implanted MOSFET	Spectroscopy
	Th1.4	(invited) Th2.3
10.30-10.45	F. Bouazzaoui - Optimized Ohmic	A. Kaminska - Origin of the Yellow
	Contacts For InAlGaN/GaN HEMTs Th1.5	Luminescence in Be-doped GaN revealed
10.45-11.00	I. Sanyal - Improving the Performance of	by hydrostatic pressure studies Th2.4 K. K. Madapu - Imaging of Surface Plasmon
10.45-11.00	AllnN/GaN and AllnGaN/GaN HEMTs by	Polaritons of 2D Plasmons of InN
	Using a Triethylgallium-Grown Channel	Nanostructures having Surface Electron
	Layer and Barrier Th1.6	Accumulation Th2.5
11.00-11.15	Coffee break	
11.15-13.00	Parallel sessions: Electrical Devices & Na	nowires
	Th3-ELECTRO (chair:C.Skierbiszewski)	Th4-NANO (chair: Xinqiang Wang)
11.15-11.45	T. Anderson - Navy Application of Wide	11.15-11.30 M. Takebayashi -
	Bandgap (WBG) semiconductors	Fabrication and characterization of GaN
	enabling future Power and Energy Systems (invited) Th3.1	nanowires optoelectronic devices Th4.1
	Systems (mvited) 1115.1	11.30-11.45 M. Terazawa - Optical simulation of GalnN-based multi-
		quantum-shell (MQS)-Light-Emitting-
		Diodes (LEDs) Th4.2
11.45-12.15	J. Hite - Vertical Power Devices Enabled	11.45-12.00 G. Avit - Self-Induced InGaN
	by Bulk GaN Substrates (invited) Th3.2	Nanowires with a Controlled Indium
		Composition and Selective Area Growth of
		InN by HVPE Th4.3
		12.00 -12.15 N. Goto - Study on emission
		wavelength control of GalnN multi-
12.15-12.30	M. Takahashi - Characterizations of high-	quantum-shell/GaN nanowire Th4.4 A. Suzuki - Device fabrication of GalnN-
12.13-12.30	temperature Mg ion implantation in	based multi-quantum-shell LEDs Th4.5
	GaN Th3.3	and the quantum offen ELDS III 113
12.30-12.45	H. Sakurai - Non-cap thermal activation	A Kapoor - Green/Yellow/Red Emission
	process of Mg-ion implanted Ga-polar	From m-plane Core-shell InGaN/GaN
		Nanowires Th4.6

	GaN using ultra high pressure N2 annealing Th3.4	
12.45-13.00	M. Deki - Improvement of Electrical	H. Zhou - Insights into the Quantum
	Stability of ALD-Al2O3/GaN Interface by	Efficiency and Recombination Dynamics of
	UV/O3 Oxidation and Postdeposition	InGaN/GaN Core-Shell Microrod LED
	Annealing Th3.5	Structures Th4.7
13.00-14.00	Lunch break	or actained in its
14.00-16.00		erization & Optoelectronic Devices and
14.00 10.00	Growth	contaction a optocicationic bevices and
	Th5- G&CH (chair: J. Hite)	Th6 - OPTO&G (chair: J. Freitas)
14.00-14.15	Y. Yamagata - In-situ observation of AIN	Xiaohang Li- Significantly enhanced
14.00-14.13	growth on levitated Ni-Al droplet Th5.1	performance for AlGaN UV LED by
14.15-14.30	M. Noorprajuda - Effect of Reaction	employing a thin BAIN electron blocking
14.15-14.50	Temperature on AlN Formation at	layer (invited) Th6.1
	Interface of Al Layer Deposited on GaN	layer (mivited) mo.1
	Substrate Th5.2	
14.30-14.45	Y. Mogami - Evolution of morphology	P. Dróżdż - Green - blue InGaN/GaN LED
14.30-14.43	and crystalline quality of sputtered AIN	array obtained by lateral band-gap
	· · · · · · · · · · · · · · · · · · ·	, ,
	films with high-temperature annealing Th5.3	engineering Th6.2
14.45-15.00		M. Sawicka In AIN growth populiarities on
14.45-15.00	T. Fudetani - Characteristics of highly	M. Sawicka - InAIN growth peculiarities on
	conductive p-type GaN films prepared	vicinal GaN substrates Th6.3
45.00.45.45	by pulsed sputtering Th5.4	M. Danna. Campanium daning of Cubic
15.00-15.15	M. Sakamoto - Improvement of electron	M. Deppe - Germanium doping of Cubic
	mobility of polycrystalline InN on glass	AlxGa1-xN Grown by Molecular Beam
45 45 45 00	substrates by AIN buffer layers Th5.5	Epitaxy Th6.4
15.15-15.30	Y. Sakurai - Structural and Electrical	V. Zubialevich - Material Redistribution
	Properties of AIN and AIGaN Prepared by	during Thermal Annealing of GaN
	Pulsed Sputtering Th5.6	Nanocolumns and Conditions for Their
45.00.45.45		Maskless Overgrowth by MOVPE Th6.5
15.30-15.45	M. Mazraehno - Surface Morphology	J. Kierdaszuk - Surface-enhanced Raman
	Control and Si-Doping of MOVPE-Grown	scattering in graphene induced by AlxGa1-
	High-Al-Content AlGaN Layers Th5.7	xN/GaN axial heterostructure nanowire
45.45.46.00	V. Chara Effection (N2 and H2 and h	substrate Th6.6
15.45-16.00	X. Shen- Effects of N2 and H2 carrier	K. Sasai - Two-step epitaxial growth of GaN
	gases on the growth of AlGaN epilayers	nanowires by MOVPE Th6.7
10.00.10.00	on Si(110) substrates by MOCVD Th5.8	
16.00-16.30	Coffee break	
16.30-18.30	Parallel sessions: Electrical Devices & Bo	
46.00.47.00	Th7 - ELECTRO (chair: M. Deki)	Th8-BN (chair: D. Hommel)
16.30-17.00	G. Cywinski -EdgeFET Devices Fabricated	16.30 - 16.45 J. Baranowski - MOCVD of
	on 2DEG GaN/AlGaN Heterostructures	Boron Nitride Films on Sapphire Th8.1
	for Basic and Applied Sciences (invited)	
	Th7.1	
		16.45-17.00 K. Pakuła - Investigation of
		MOVPE Boron Nitride Growth Th8.2

17.00-17.15	P. Sai - AlGaN/GaN EdgeFET Based on	F. Liu - Growth of BN thin films by MBE:
	Two Lateral Schottky Barrier Gates as	effect of post thermal annealing Th8.3
	Terahertz Detector Th7.2	
17.15-17.30	A. Yamamoto - A Study on 2DEG	17.15-17.45 A. Wysmołek - Excitonic
	Properties of AlGaN/GaN Structures	spectra of ultra-thin epitaxial boron
	Formed on Stepped GaN Surfaces for	nitride layers grown by MOCVD (invited)
	Vertical Power Devices Th7.3	Th8.4
17.30-17.45	Yung-Ting Ho - Modified Small-Signal	
	Model for High Frequency GaN-on-Si	
	HEMT with the Leaky Buffer Th7.4	
17.45-18.00	Y. Ando - Schottky Barrier Diodes	H. Sun - Novel BAIN/AlxGa1-xN
	Fabricated on Miscut m-plane	heterostructures for optical and power
	Substrates Th7.5	devices Th8.5
18.00-18.15	E. Lutsenko - AlGaN/GaN HEMT	U. Ooe - Nitrogen Plasma Effects on MBE
	Heterostructures Grown by Ammonia	Growth of GaN on Graphitic Substrate
	and Combined Plasma-	Th8.6
	Assisted/Ammonia MBE on Sapphire	
	Substrates Th7.6	
18.15-18.30		J. Schmitt - New AlScN growth and
		annealing for used as lattice matched
		substrate for deep UV LEDs Th8.7

FRIDAY (10 TH AUGUST)		
8.30-10.15	Parallel sessions: Characterization & Elec	ctrical Devices
	Fr1 - CH (chair: R. Oliver)	Fr2 - ELECTRO (chair: G. Cywinski)
8.30-9.00	M. Albrecht - InGaN still to be discovered	A. Yamada - Ultralow-sheet-resistance
	(invited) Fr1.1	high-electron-mobility transistor
		structures with strain-controlled high-Al-
		composition AlGaN barrier (invited) Fr2.1
9.00-9.30	J. Smalc-Koziorowska - Differences in the	9.00-9.15 T. Hamachi - Leakage current
	mechanism of strain relaxation of InGaN	analysis for individual dislocations in the
	buffer layers deposited on	modified Na-flux GaN bulk single crystal
	GaN/sapphire templates and GaN bulk	Fr2.2
	substrates (invited) Fr1.2	9.15-9.30 S. Usami - Dependency of the
		reverse leakage current on the MOVPE growth pressure of vertical p-n diodes on
		a GaN free-standing substrate Fr2.3
9.30-9.45	R. Mohamad - Investigation of the	K. Matsumoto - Reduction of Carrier
5.55 51.15	spontaneous crystallographic	Concentration Increase near the Surface
	degradation in nearly lattice-matched	of Silicon Substrate after GaN Growth
	InAlN layers to GaN Fr1.3	Fr2.4
9.45 – 10.00	J. Moneta - The Upper Limit for InGaN	Yu-En Jeng - RF-Loss Suppression of
	Plastic Relaxation – Could We Obtain	AlGaN/GaN-on-Si HEMT With Superlattice
	Fully Relaxed InGaN Layer? Fr1.4	Buffer Fr2.5
10 00 10 15	A. Lachowski - Structural Studies of the	JunShuai Xue- Growth and
10.00-10.15	Processes Occurring During Thermal	JunShuai Xue- Growth and Characterization of InAIN/AIGaN
	Annealing of InGaN Quantum Wells	Heterostructures Fr2.6
	Fr1.5	Treter ostructures 112.0
10.15-10.45	Coffee break	
10.45-12.15	Parallel sessions: Growth and Characteri	zation & Optoelectronic Devices
	Fr3 - G&CH (chair: J. Baranowski)	Fr4 -OPTO (chair: S. Chichibu)
10.45-11.15	L. Janicki - Determination of the Fermi	Mi-Hee Ji - Growth and Device
	Level in Doped GaN by Contactless	Characterization of III-N Deep-Ultraviolet
	Electroreflectance (invited) Fr3.1	Avalanche Photodiodes and Arrays
44 45 44 20	II Tousie Allevine as an effective works	(invited) Fr4.1
11.15-11.30	H. Turski - Alloying as an effective way to	S. Zlotnik - Alternative Growth
	increase Mg incorporation into GaN Fr3.2	Approaches of p-Type Doped AlGaN Epitaxial Structures Fr4.2
11.30-11.45	B. Rackauskas - Self-Compensation of	A. Hospodkova - Design of InGaN/GaN
11.50-11.45	Carbon in AlGaN Fr3.3	MQW structure for scintillator
	Carbon III / III cart 11010	applications Fr4.3
11.45-12.15	R. Collazo - Controlling Si Doping Limits	N. Grandjean - Burying surface defects in
	in Al Rich AlGaN: Knee Behavior and Low	InGaN underlayer to increase blue LED
	Doping Limits (invited) Fr3.4	efficiency (invited) Fr4.4
12.30-13.00	Closing Ceremony (chair: I. Grzegory and	Y. Nanishi)
13.00-14.00	Lunch	

	POSTER SESSION (TUESDAY 7 TH AUGUST, 18.00-21.00)
Po01	Raman Spectroscopic Study of GaN Grown on (111)Si Using an AllnN Intermediate Layer by
	MOVPE, T. Sugiura et al., National Institute of Technology, Toyota College, Japan
Po02	InGaN Band Gap Compositional Dependence Determined by Means of Photoacoustic
	Spectroscopy, R.Oliva Vidal et al., Politechnika Wrocławska, Poland
Po03	TEM Investigations on High-Temperature Annealed epi-AlN on Sapphire, L. Cancellara et al.,
	Leibniz-Institute for Crystal Growth, Germany
Po04	Diffusion and out-diffusion of Mn in gallium nitride, R. Jakieła et al., Istitute of Physics Polish
	Academy of Sciences, Poland
Po05	Impact of Si doping in different GaN layers on luminescence properties of InGaN/GaN
	multiple quantum well structure, F. Hájek et al., Institute of Physics, Czech Academy of
	Science, Czech Republic
Po06	Optical modulation spectroscopy of AlxGa1-xN epilayers and AlxGa1-xN/GaN quantum wells
	in the UV spectral range, E. Zdanowicz et al., Wrocław Research Center EIT+, Poland
Po07	Excess Carrier Lifetime in Ammonothermal GaN Doped with Si, Mg, and Mn, Ł. Janicki et al.,
	Wrocław University of Science and Technology, Poland
Po08	Influence of Depletion Layer on Spatial Distribution of Cathodoluminescence Intensity in GaN
	Nanowires, B. Adamowicz et al., Institute of Physics - CND, Silesian University of Technology,
	Poland
Po09	Influence of Macrosteps on Deep-ultraviolet Emission from AlGaN/AlGaN Multiple Quantum
5 40	wells, K. Kataoka et al., Toyota Central R&D Labs., Inc., Japan
Po10	Growth of InGaN Films by Reactive Sputtering, Q. Guo et al., Saga University, Japan
Po11	High temperature vapor phase epitaxy for the growth of GaN layers on sapphire substrates,
	M. Förste et al., Institute of Nonferrous Metallurgy and Purest Materials, TU Bergakademie
5 40	Freiberg, Germany
Po12	Study of Indium Incorporation in OMVPE Grown 200-nm Thick InxAl1-xN Layers, S. Hasenöhrl
D-42	et al., Institute of Electrical Engineering, Slovak Academy of Sciences, Slovakia
Po13	Structure of AIN films formed by nitriding the aluminum metal layers on the (0001) sapphire
	substrates, A. Muslimov et al., Federal Research Center "Crystallography and Photonics", RAS, Russia
Po14	AlN layers grown by Ga-Al liquid phase epitaxy on nitrided r-plane sapphire substrate,
P014	N. Kanno et al., Tohoku University, Japan
Po15	HVPE Growth Method for Thick AIN Epilayer, H. Soo Ahn et al., Korea Maritime and Ocean
1013	University, Korea (South)
Po16	Mg-doped AlN Epilayer Grown by Mixed Source HVPE Method, H. Soo Ahn et al., Korea
. 525	Maritime and Ocean University, Korea (South)
Po17	The Growth of High Al Composition AlxGa1-xN Epilayers, Hyung Soo Ahn et al., Korea
	Maritime and Ocean University, Korea (South)
Po18	Characteristics of Epilayers in Light Emitting Diode Grown by HVPE Method, H. Soo Ahn et al.,
	Korea Maritime and Ocean University, Korea (South)
Po19	Characteristics of aluminum nitride films on hexagonal boron nitride buffer layers using
	various growth methods through metal organic chemical vapor deposition, M. Han et al.,
	Chonbuk National University, Korea (South)
Po20	Synchrotron radiation x-ray topography and defect selective etching analysis of threading
	dislocations in HVPE-GaN, J. Weyher et al., Institute of High Pressure Physics PAS, Poland
Po21	Crystallization of Thin GaN Layers by HVPE Method on Native and Foreign Substrates,
	M. Oklej et al., Institute of High Pressure Physics PAS, Poland
Po22	Highly resistive HVPE-GaN grown on native seeds – investigation and comparison of different
	dopants, M. Iwinska et al., Unipress, Poland
Po23	Highly conductive HVPE-GaN grown on native seeds – investigation and comparison of
	different dopants, B. Lucznik et al., Institute of High Pressure Physics PAS, Poland

D-24	Vacancy defeats in Ci and Co depend HVDE Call investigated by positron application
Po24	Vacancy defects in Si and Ge doped HVPE-GaN investigated by positron annihilation spectroscopy, I. Prozheev et al., Department of Applied Physics, Aalto University, Finland
D-2F	Growth of 2-inch HVPE-GaN doped with Si – numerical simulations and experiments, S.
Po25	Sakowski et al., Institute of High Pressure Physics Polish Academy of Sciences, Poland
Po26	Homoepitaxial Semi Polar Growth of GaN on Ammono Seeds by HVPE, M. Amilusik et al.,
P020	Institute of High Pressure Physics PAS, Poland
Po27	GaN crystallization from iron based solution at 1 and 6 GPa pressures – investigation of critical
1027	points of this experimental approach, B. Sadovyi et al., Institute of High Pressure Physics,
	Polish Academy of Sciences, Poland
Po28	Influence of electron concentration on chemo-mechanical polishing rate of gallium nitride
1 020	wafers, G. Kamler et al., Institute of High Pressure Physics Polish Academy of Sciences, Poland
Po29	Growth of low Threading Dislocation Density GaN single crystal during the Na-flux Point Seed
	Method at low supersaturation, Y. Sawada et al., Osaka University, Japan
Po30	Effect of AIN Cap Protection on the Decomposition of High-Temperature Annealed GaN –
	M. Masłyk et al., Institute of Electron Technology, Poland
Po31	Increasing scintillator active region thickness by InGaN/GaN QW number, T. Vaněk et al.,
	Czech Academy of Science, Institute of Physics, Czech Republic
Po32	Effect of dust contamination on GaN/InGaN multiple quantum well growth morphology,
	K. Kuldová et al., Institute of Physics, Czech Academy of Sciences v.v.i., Czech Republic
Po33	Inhomogeneous Luminescence of InGaN/GaN Quantum Wells: Effect of Growth
	Temperature, Carrier Gas and the Buffer Layer Growth, F. Dominec et al., Institute of Physics,
	v.v.i., Academy of Sciences of the Czech Republic, Czech Republic
Po34	Effects of Nitrogen Radical Irradiation on InN Growth by RF-MBE, F. Bin Abas et al.,
	Ritsumeikan University, Japan
Po35	Influence of Different InGaN/(In)GaN Growth Modes on Indium Incorporation and Quality of
D-2C	Layers, T. Hubacek et al., Institute of Physics, Czech Academy of Sciences, Czech Republic
Po36	Use of Low Temperature Buffer Layer to Suppress the Contamination of InGaN/GaN Quantum Wells, M. Zíková et al., Institute of Physics, Czech Academy of Sciences, Czech
	Republic
Po37	UV Emitting Defects in Hexagonal Boron Nitride, K. Korona et al., University of Warsaw,
1037	Poland
Po38	MOVPE Growth and Surface Morphology Investigation of High Quality GaN, Al0.14Ga0.86N
	Epilayers and Al0.14Ga0.86N/GaN Superlattice, K. Moszak et al., Wrocław Research Center
	EIT+ Sp. z o.o., Poland
Po39	Plasma-assisted MBE and structural properties of AlGaN nanorods selectively grown on
	μ-cone patterned c-sapphire substrates, A. Semenov et al., loffe Institute, Russia
Po40	Morphology and Electrical Properties of InGaN:Mg/InGaN:Si Tunnel Junctions Grown by
	Plasma-assisted Molecular Beam Epitaxy, M. Żak et al., Institute of High Pressure Physics
	Polish Academy of Sciences, Poland
Po41	Influence of Mg-doped Layers on Internal Optical Losses in InGaN Laser Diodes, M. Hajdel
	et al., Institute of High Pressure Physics Polish Academy of Sciences, Poland
Po42	Comparison between MBE-grown InGaN/GaN Blue LEDs with Standard p-contact and Tunnel
D 40	Junction p-contact, C. Bharadwaj et al., Cornell University, Ithaca, USA
Po43	Kelvin probe force microscopy study of High electron mobility transistors, A. Minj et al.,
Do44	Centre National de Recherche Scientifique, France Probing piezoelectric polarization and hole trapping induced surface band bending at
Po44	interface dislocations in InGaN/GaN heterostructures, A. Minj et al., Centre National de
	Recherche Scientifique, France
Po45	Stress and surface defects control for optimization of AlGaN/GaN/Si(111) HEMT-type
1 049	structures properties , T. Szymanski et al., Wrocław University of Science and Technology,
	Poland
	•

Po46	On-chip near-ultraviolet multicomponent system toward the internet of things,
	Yongjin Wang et al., Nanjing University of Posts and Telecommunications, China
Po47	Monte Carlo simulation of carbon incorporation in GaN MOVPE, S. Yamamoto et al., Kyushu
	University, Japan
Po48	Migration Energy of a N Atom around Ga Vacancy in GaN, M. Oda, Wakayama University,
	Japan
Po49	Compositional Dependence of Band Gaps in III-Nitride Semiconductor Superlattices,
	T. Kawamura et al., Graduate School of Engineering, Mie University, Japan
Po50	Electronic and Thermodynamic Properties of the AlN/diamond Interfaces – a DFT Studies,
	M. Sznajder et al., University of Rzeszow, Faculty of Mathematics and Natural Sciences,
	Poland
Po51	On determination of the dominant recombination mechanisms from time resolved
	photoluminescence in nitride semiconductor heterostructures, K. Sakowski et al., Institute of
	High Pressure Physics, Polish Academy of Sciences, Poland
Po52	Effective approach for calculating absolute surface energies of polar and semipolar planes for
	group-III nitrides under MOVPE conditions, T. Akiyama et al., Department of Physics
	Engineering, Mie University, Japan