

Crystal Growth: Physics, Technology and Modeling

Stanisław Krukowski & Michał Leszczyński Institute of High Pressure Physics PAS 01-142 Warsaw, Sokołowska 29/37 e-mail: <u>stach@unipress.waw.pl</u>, <u>mike@unipress.waw.pl</u>

Zbigniew R. Żytkiewicz

Institute of Physics PAS 02-668 Warsaw, Al. Lotników 32/46 E-mail: <u>zytkie@ifpan.edu.pl</u>

Lecture 1. Epitaxy - introduction 22 February 2023

http://w3.unipress.waw.pl/~stach/cg-2022-23/

Epitaxy - introduction

Outline

- definitions
- methods of epitaxial growth
- lattice mismatch
- thermal strain
- antiphase domains (polar on non-polar growth)
- some methods to reduce defect density in lattice mismatched epitaxial structures

Definitions

Epitaxy = growth of monocrystalline layers on the monocrystalline substrate in the way that crystalline structure of the layer is determined by the structure of the substrate

- **Homoepitaxy** = the layer and the substrate are the same
- Heteroepitaxy = the layer and the substrate are different (e.g. they differ by chemical composition)

Methods of epitaxial growth

• Epitaxy from a gas phase (MBE, VPE, MOVPE, HVPE, ...) $V_{gr} \sim \mu m/h$ next lectures: Z.R. Żytkiewicz i M. Leszczyński

• Liquid phase epitaxy (LPE, LPEE, ...) $V_{gr} \sim \mu m/min$ lecture: Z.R. Żytkiewicz 5 April 2023

Solid Phase Epitaxy

mass transport mechanism – solid state diffusion

Examples:

post implantation annealing

Figure 10. Schematic diagrams of the growth process of GaN on sapphire with an AIN buffer layer.

Lattice mismatch

limited number of available substrate crystals!!!

epitaxy of layers lattice mismatched to the substrate - the most common case

Lattice mismatch

assumptions:

$$h_s = \infty$$

$$h_e < h_{cr}$$

$$a_e^{relax} > a_s$$

before epitaxy

after epitaxy

$$a_e^{\text{II}} = a_s < a_e^{relax}$$

compression in the layer

$$a_e^{\perp} > a_e^{relax}$$

tetragonal lattice distortion

lattice misfit

$$f = (a_e - a_s) / a_s$$

strain energy in the layer

$$E_{el} \propto f^2 \cdot h_e$$

How to reduce lattice mismatch induced strain energy ?

interdiffusion

- very slow process
- less important in "thick" films
- important in nanostructures

surface deformation

- lattice relaxation at the surface
- important in nanostructures (QDs)
- less important in "thick" films

(misfit dislocations - MD)

epitaxy of **B** on substrate A

separate A and B a(B) > a(A)

(misfit dislocations - MD)

epitaxy of **B** on substrate A

separate A and B a(B) > a(A)

(misfit dislocations - MD)

epitaxy of **B** on substrate A

separate A and B a(B) > a(A)

(misfit dislocations - MD)

epitaxy of **B** on substrate A

separate A and B a(B) > a(A)

(misfit dislocations - MD)

epitaxy of **B** on substrate A

separate A and B a(B) > a(A)

Generation of misfit dislocations (misfit dislocations - MD)

layer with misfit dislocations

Do we like misfit dislocations ?

Threading dislocations

Dislocations cannot terminate inside the perfect crystal

edge dislocations A-D;

MD = misfit dislocation TD = threading dislocation

TD dislocations induce nonradiative recombination

Lester et al. APL 66 (1995) 1249

Fig. 3 Dependence of LED efficiency on dislocation density for devices made with a wide range of III-V materials [11].

Do we like misfit dislocations ? Threading dislocations

Lifetime of GaN/InGaN laser diodes as a function of dislocation density (from Sony)

Fig. 6. Average film stress versus Al content data determined by ABAC (open circles and squares) and K α PS (solid circles and squares) techniques. Solid triangle at x = 1.0 is after Ettenberg and Paff⁷).

Fig. 12. Comparison of threshold current density data versus active GaAs layer thickness for lasers with ternary (closed symbols) and quaternary (open symbols) waveguiding layers (see text).

Thermal strain cont.

• Laser DH GaAlAs/GaAs Rozgonyi, Petroff, Panish JCG <u>27</u> (1974) 106.

AlGaAs/GaAs -

0.7

considered as an ideal laser system perfect lattice matching

 GaAs on Si cracking of GaAs layers thicker than ~ 10 μm 10⁹ dyn/cm² = 100 MPa

Lattice mismatch strain - application

APPLIED PHYSICS LETTERS 89, 223109 (2006)

Rolled-up micro- and nanotubes from single-material thin films

R. Songmuang,^{a)} Ch. Deneke, and O. G. Schmidt Max-Planck-Institut für Festkörperforschung, Heisenbergstr. 1, D-70569 Stuttgart, Germany

(Received 1 August 2006; accepted 5 October 2006; published online 28 November 2006)

The authors fabricate well-positioned and size-scalable semiconductor micro- and nanotubes from *single-material* layers. The tubes form when a partially strain-relaxed film, grown at low substrate temperatures, is released from the substrate by selective underetching. The layer rolls *downwards* or *upwards* depending on whether it is initially tensile or compressively strained. They create silicon and indium-gallium-arsenide tubes with diameters accurately tunable by varying the layer thickness. They draw a simple model to describe the mechanism responsible for the tube formation from a single-material thin film. Moreover, the tube diameters are shown to scale with strain and layer thickness. © 2006 American Institute of Physics. [DOI: 10.1063/1.2390647]

after release by etching

Si substrate

GaAs substrate

(c) Contraction

Expansion

20

Antiphase domains (polar on nonpolar)

(antiphase domain boundaries - APB)

some tricks are needed (e.g. annealing of Si (111) substrate) to reduce density of APB

Generation of misfit dislocations: the mechanisms

bending of substrate TDs

generation of dislocation half-loops

 $N_{TD} \propto \frac{2}{l_{av}}$

 l_{av} - length of MD segment Ge_{0.25}Si_{0.75}/Si $l_{av} \sim 10 \ \mu\text{m}$;

in lattice-mismatched structures EPD ~ 10^6 - 10^{10} cm⁻²

Critical thickness for MD generation

Matthews & Blakeslee Journal of Crystal Growth 27 (1974) 118

misfit stress force

dislocation line tension

 $F_{\sigma} \sim b \cdot h_{\rho} \cdot f$ $F_T \sim b^2 \cdot \left[\ln \left(\frac{h_e}{b} \right) + 1 \right]$

 $F_{\sigma} > F_T \longrightarrow$ growth of MD segment

$$F_{\sigma} = F_T \longrightarrow h_e = h_{cr}$$
 (onset of MD generation)

equilibrium model

velocity of MD \propto excess stress (actual stress - stress @ EQ)

strain = $f(h_e, T, t, ...)$

dynamical model

 $h_{\rm e} \approx h_{\rm cr}$

 σ

 F_{τ}

Buffer layers

Threading dislocations in thick buffers

How to speed up reduction of EPD with buffer thickness? 25

Annealing

thermal strain \Leftrightarrow driving force for TD movement

Yamamoto & Yamaguchi MRS 116 (1988) 285

Yamaguchi et al. APL <u>53</u> (1988) 2293

Filtration of TDs by strained superlattice

lattice mismatch strain \Leftrightarrow driving force of bending and movement of dislocations

Qian et al. J. Electrochem. Soc. <u>144</u> (1997) 1430

Fig. 5. Cross-sectional bright field micrograph shows the dislocation filtering of the GaSb/AlSb SLS. The majority of threading dislocations are bent by the SLS resulting in low defect density at the top GaSb layer.

- SLS filter efficient for high TD densities
- careful growth needed (no new defects)
- sometimes annealing used in addition

TD density $< 10^6 - 10^7 \text{ cm}^{-2}$ not achievable in homogeneous buffers

Epitaxy on "small" substrates

Epitaxy on "small" substrates - Nanowires (NWs)

small NW footprint (small contact area with the substrate)

GaN NWs on nitridated Si

GaN NWs on AlN/Si

A. Wierzbicka, et al. Nanotechnology 24 (2013) 035703

perfect structural quality of NWs despite their large lattice mismatch with the subgerate

Epitaxy on "small" substrates - Nanowires (NWs)

Growth on "thin" substrates – concept of compliant substrates

equal forces in both parts

$$\sigma_e \times h_e = \sigma_s \times h_s$$

Hook's law

 $\sigma \propto \varepsilon$

$$\varepsilon_0 = \varepsilon_e + \varepsilon_s = \frac{\Delta a}{a}$$

$$\frac{\mathcal{E}_e}{\mathcal{E}_0} = \frac{h_s}{h_e + h_s} \quad h_s = h_e \Leftrightarrow \mathcal{E}_e = \mathcal{E}_s$$

partial transfer of strain from epi to substrate larger critical thickness Y.H. Lo, APL <u>59</u> (1991) 2311

$$\frac{1}{h_{cr}} = \frac{1}{h_{cr}^{\infty}} - \frac{1}{h_{s}}$$

for $h_{s} > h_{cr}^{\infty}$

 h_{cr} critical thickness $h_{cr}^{\infty} = h_{cr}(h_s = \infty)$

layer

31

ubstrate

How to produce thin substrate membranes?

thin membrane

substrate

Х

Requirements:

- strong bonding with the substrate in the z direction
 to avoid rolling up of the membrane
- weak bonding with the substrate in the x direction
 - sliding of the membrane on the substrate possible
- large area and small thickness of the membrane

De Boeck et al. JJAP <u>30</u> (1991) L423

MBE 1.3 µm GaAs/Si; patterning + mesa release & deposition MBE growth of 1 µm GaAs

PL: no strain in GaAs grown on the membrane large strain in GaAs grown on bulk Si

Formation of thin substrates by wafer bonding

- connection: T ~ 550° C in H_2 or UHV
- pressure: ~ 200 g/2 inch wafer
- etching to remove the host substrate
- twist angle Θ : 0 45°
- very thin layers (10 ML) can be bonded

Problems:

- gas bubbles at the joint leading to cracks
- residual contaminations at the joint
- problems with cleaving
- difficult technology

Twist-bonded interface

Benemara et al. Mat. Sci. Eng.B <u>42</u> (1996) 164

Plane-view TEM of bonded Si wafers $(\Theta \sim 0.6^{\circ})$

dense network of screw dislocations **"soft" connection** distance between dislocations = $f(\Theta)$ no threading dislocations

Universal compliant substrate

Ejeckam et al. APL <u>70</u> (1997) 1685 film GaAs 10 nm; $\Theta \sim 17^{\circ}$ in H₂ 300 nm of InGaP on GaAs by MOVPE $f = 1\% \implies h_e = 30 \times h_{cr}^{\infty}$ (10 nm)

Lo et al. Cornell Sci. News 1997; Ejeckam et al. APL <u>71</u> (1997) 776

Conclusion:

- spectacular <u>laboratory</u> results;
- nice confirmation of the effect of strain transfer from epilayer to the thin substrate
- difficult technology
- no reports on a wide application in the industry

Methods to reduce defect density in lattice mismatched epitaxial structures - summary

There are no universal method to reduce dislocation density in lattice mismatched heterostructures; The best way is to avoid lattice mismatch – find the suitable substrate !!! 35

Epitaxial Lateral Overgrowth - ELO

MOVPE GaN: $S = 5 - 20 \ \mu m$; $W = 2 - 5 \ \mu m$ LPE GaAs: $S = 100 - 500 \ \mu m$; $W = 6 - 10 \ \mu m$

Lecture - 5 April 2023