

Electrical characterization of semiconductors and semiconductor based structures

Dr. Ramón Schifano schifano@ifpan.edu.pl

Institute of Physics, Polish Acad. of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw, Poland

Outline pt.1

- 1. Schottky junctions: Schottky-Mott limit and beyond.
- 2. Rectifying vs. Ohmic contacts and real structures.
- 3. Current vs Voltage and Capacitance vs Voltage characterization of rectifying structures and what can be extracted from them.

Assumptions:

1) No changes in ϕ_m and X_s when brought in contact.

2) No electron states present on the semiconductor surface or metal-semiconductor interfaces.

3) No interfacial layer.

Surface effects

Examples of effects not considered:

- 1) Adsorbates (difficult to get rid of, like H).
- 2) Sub surface defects resulting from processing, piezoelectric field induced charge/defects.
- 3) Interfacial reactions.
- 4) Formation of surface/ interface states and surface reconstruction.

Changes in surface conductivity vs time after exposure of the ZnO (10.0) surface to various gases.*

 $^{(^{\}ast})$ After V. E. Henrich and P. A. Cox The surface science of metal oxides, Cambridge University Press (1996).

Beyond the Schottky-Mott limit: Bardeen model

Vacuum level

ε

eV

eV,

eV_{bi}

eV.

E_G

Assumptions:

Interfacial layer 1) of thickness δ .

E^SF \mathbf{E}_{F}^{m} $\mathbf{E}_{\mathrm{F}}^{\mathrm{m}}$ Defects in the 2) ò EG band-gap uniform D_S (per surface unit and multiplied by e)

Φ

Conduction band of

φ_m

the insulator

$$\Phi_b^0 = \gamma \ (\phi_m - \chi_S) + (1 - \gamma) \ (E_G - \phi_0)) \qquad \gamma = \frac{\varepsilon_0 \varepsilon_r}{\varepsilon_0 \varepsilon_r + e \delta D_S} \qquad \text{with } \phi_0 \text{ being the neutral level}$$

$$D_S \rightarrow 0 \qquad \qquad D_S \rightarrow +\infty \qquad \qquad D_S \rightarrow +\infty \qquad \qquad \Phi_b^0 = (E_G - \phi_0)$$

Beyond the Schottky-Mott limit: MIGS model

Assumptions:

- Metal in intimate contact with the semiconductor (i.e. no interfacial layer metal deposited in situ/cleavage.
- 2) Formation of interfacial states by contact with the metal (metal induced gap states-MIGS).

Relative charge distribution of the MIGS states as a function of the distance from the metal —semiconductor interface (z=0).Aluminium used as contact material.*

(*) After S. G. Louie et al. Phys. Rev. B 2154, 15 (1977).

Higher ionicity → less penetration → towards the Schottky-Mott limit

Current in Schottky junctions (thermionic case)

- Flow S→M increase of electrons able to overcome the barrier due to the applied V.
- Flow $M \rightarrow S$ no changes.

$$J = J_0 \left[exp\left(\frac{eV}{k_BT}\right) - 1 \right] \quad \text{with:} \quad J_0 = A^* exp\left(\frac{-e\Phi_{b0}}{k_BT}\right) \quad A^* = \left(\frac{4\pi m^* ek_B^2}{h^3}\right)$$

Rectifying versus Ohmic contacts

- Reducing the barrier thickness increases the probability of quantum mechanical tunneling.
- For $N_d \gtrsim 10^{17} \text{ cm}^{-3}$
 - 1) Thermionic field emission.
 - 2) Field emission.
- Essentially Ohmic contacts are obtained even though a barrier is present.

Ideality factor n

$$J = J_0 \left[exp\left(\frac{qV}{k_BT}\right) - 1 \right] \qquad \text{with} \qquad J_0 = A^* exp\left(\frac{-e\Phi_{b0}}{k_BT}\right)$$

If the barrier height depends linearly on the applied voltage:

$$J = J_0 \exp\left(\frac{eV}{nk_BT}\right) \left[1 - \exp\left(\frac{-eV}{k_BT}\right)\right]$$

Other examples:

- 1) Interfacial layer.
- Barrier height fluctuations.

Recombination in the depleted region W (n~2).

The real device: equivalent circuit

The leakage mechanism: R_d

 Reverse current characteristics can be analyzed using a differential approach:¹

$$\alpha(V) = \frac{V}{I} \frac{dI}{dV}$$
 if $I \propto V^a exp(bV^c)$ then $\alpha(V) = a + bcV$

 a~0.5 points to defective channels conductions and b ~2 Frenkel-Poole enhancement.²

[1] G.D. Bagratishviliet al. Phys. Status Solidi A 65, 701 (1981).

[2] P. Blood, and J.W. Orton, The Electrical Characterization of Semiconductors: Majority Carriers and Electron States, Academic Press, London, 1992.

^(*) After R. Schifano et a.l Appl. Surf. Science 149067, 552 (2021)).

I-V to determine R_s and n (Werner method)

Schottky contact in the thermionic emission regime current with reverse characteristics already analyzed:

$$I = I_0 \exp(e(V - IR_S)/nk_BT)$$

when $e(V - IR_S) \gg k_B T$)

5 (_ /

[1] R. Schifano et al. phys. stat. sol. (a). 8, 205 (2008).

 $R_{\rm S}$ has to be known prior to measure the capacitance.

C-V measurement of a Schottky diode

 The capacitance of a Schottky diode vs reverse bias (V_R) in case of constant effective doping (N_D - N_D):¹

$$C^{-2} = \left(\frac{2}{A^2 e (N_d - N_a)\varepsilon_0\varepsilon_r}\right) \left(V_{bi} + V_r - \frac{k_B T}{e}\right)$$

• Plotting $C^{-2} vs V_R$ can be used to evaluate V_{bi} .

[1] E.H. Rhoderick, R.H. Williams, Metal-Semiconductor Contacts, Oxford University Press, 1988.

C-V measurements to measure the conduction band misalignment

- Anderson model equivalent to the Schottky-Mott limit
- The conduction band offset ΔE_c is given by

$$\Delta E_C = E_{g2} - (qV_d + \delta_1 + \delta_2)$$

with δ_1/δ_2 equal to

$$n_{S1} = \int_0^{+\infty} \sqrt{2E} \frac{m_{S1}^{3/2}}{\pi^2} \frac{1}{exp((E+\delta_{S1})/k_BT) + 1} \qquad p_{S2} = \frac{1}{4} \left(\frac{2k_B T m_{S2}}{\hbar^2 \pi}\right)^2 e^{\frac{-\delta_{S2}}{k_B T}}$$

and qV_d that can be measured by C-V considering that:

Mesa structures with a semitransparent AI/Ti Ohmic back contact (~10% transmittance).

- High rectification ratios (10⁹), ideality factor ~1 (1.17±0.04), leakage current density (~6 10⁻⁸ A/cm²), (~10³) light to dark reverse current ratio.
- Type II band alignment, $\Delta E_c = (1.3 \pm 0.2) \text{ eV}$ in agreement with the values extracted from XPS measurements (1.5±0.2) eV.¹

C-V measurement of a Schottky diode: effective donor profile (beyond the uniform approximation)

 The profile of the effective donor concentration N_{eff} (electron responding to the probing signal).

$$N_{eff}(W) = \frac{1}{e \, \varepsilon_0 \, \varepsilon_r \, A^2} \frac{C^3}{\frac{\partial C}{\partial V}} \qquad \text{with} \qquad W = \frac{\varepsilon_0 \, \varepsilon_r \, A}{C}$$

•The profile of the effective donor concentration N_{eff} in the n-ZnO/p-4H-SiC heterostructure discussed in the previous slide.

Effective donor profile:example

• TEM analysis evidenced presence of an O-rich polycristalline/amorphous region on the ZnO surface/interface.

• $O_i(oct)/V_{Zn}$ theoretically anticipated to be acceptor like defects consistent with the N_{eff} profile.¹

(*) After R. Schifano et a.I Appl. Surf. Science 149067, 552 (2021)).

Outline pt.2

- 1. Defects characteristics.
- 2. Deep level transient spectroscopy and Laplace deep level transient spectroscopy: how it is working and examples.
- 3. Thermal admittance spectroscopy: how it is working and examples.
- 4. Towards electrical defects assignment: examples.

Electrically active defects in a semiconductor (beyond shallow donors)

- Deep levels strongly localized.
- The same defect can present several charge states (provide different levels).
- Adding an electron does not necessary means reducing the enthalpyactivation energy (negative-U).

Interaction of a defects with the bands

 Capture of carriers occurs via a characteristics quantity, the capture cross section, via

$$c_n = \sigma_D < v > n$$

 Emission towards the bands follows an exponential emission law

$$e_n^D = \sigma_{Di} T^2 \gamma \exp\left(\frac{-E_D}{k_B T}\right) \quad \text{with} \quad \gamma = 2\sqrt{3} (2\pi)^{\frac{3}{2}} k^2 \frac{m m^*}{h^3}$$
$$e_n^D / \mathbf{c}_n \simeq \exp\left(\frac{E_D - E_F}{k_B T}\right)$$

Defects: carrier emission/capture

Shockley-Read-Hall statistics for majority carrier trap:

- the defect is emitting mainly towards the closest band.
- capture determined by the Fermi level position respect to the position of the defect related level into the bandgap

n-type semiconductor

majority carriers trap are defects with levels in the upper part of the band gap

TAS/DLTS what can they be used for?

- Determining signatures (capture cross section/enthalpyactivation energy) of electrically active defects and their concentration.
- Based on capacitance measurements.

Requirements for TAS/DLTS

- Relatively good rectifying junction.
- Depletion region extending mainly in the material to be studied i.e. Schottky contacts, n⁺-p or p⁺-n junctions/heterostructures.

Principle of TAS/DLTS measurements

- Study of the changes in capacitance due to the emission/capture of majority carriers by electrically active defects present in the depleted region.
- Capacitance changes acquired at different temperatures either temperature scans or different fixed temperatures depending on the accuracy required.

DLTS: how to get a transient (Schottky diode case)

- 1) Steady state: Schottky junction in reverse bias.
- 2) Filling pulse: charging of the defect.
- Back to the initial reverse bias: observing the defect decharging.

$$n_{filled} = N_T \exp(-e_D t) \propto \Delta C(t)$$
$$e_D = \beta T^2 \sigma_{app} \exp\left(\frac{-\Delta H}{k_B T}\right)$$

$$\Delta C(t) = C_{\infty} \frac{1}{2} \left(\frac{x_1^2 - x_2^2}{x_d^2} \right) \frac{N_T}{N_D} \exp(-e_D t)$$

$$\Delta C_0 = \frac{1}{2} \left(\frac{x_1^2 - x_2^2}{x_d^2} \right) \frac{N_T}{N_D} \exp(-e_D t)$$

DLTS principle how to analize the acquired data

- Measuring the transients at different temperature.
- The DLTS spectra is the result of post measurement calculations.
- Transient is sampled at time t₁ and t₂ and substracted^{*}.
- If t₁ fixed and t₂ varied the maximum will shift.

The DLTS spectra

$$S_{DLTS}(T) = \frac{1}{t_i} \int_{t_p}^{t_p + t_i} \Delta C(t, T) \cdot w(t - t_p) \cdot dt =$$
$$= \frac{1}{t_i} \int_{t_p}^{t_p + t_i} \Delta C_0 \exp(-e(T)t) \cdot w(t - t_p) \cdot dt$$

the weighting function w is establishing the e(T) "window" for which e(T) is "resonant" with the weighting function \square DLTS max.

Varying t_i "window" changes the value of **e(T)** "resonant".

Possible weighting functions (among the others)

- 1) Box-car method (original Lang approach see two slides above).
- 2) Lock-in based on

$$w(t - t_p) = \begin{cases} -1 & t_p \le t < t_p + t_W/2 \\ +1 & t_p + t_W/2 \le t \le t_p + t_W \end{cases}$$

3) GS4 and following¹

[1] A. A. Istratov J. Appl.

$$w(t - t_p) = \begin{cases} +2 t_p \le t < t_p + t_W/4 \\ -26 t_p + t_W/4 \le t < t_p + t_W/2 \\ 48 t_p + t_W/2 \le t < t_p + 3t_W/4 \\ -24 t_p + 3t_W/4 \le t \le t_p + t_W \end{cases}$$

The choice of the weighting function w

Possible presence of false roots and intensity reduction.

Laplace DLTS

Large instrumental broadening in ordinary DLTS spectra

Resolve time constant ratios larger than ~ 15-12 (5)

The spectral density of the transient F(s) can be determined by inverting

$$\Delta C(t) = \int F(s) \exp(-st) \, ds$$

Requires isothermal averaging to achieve a "good enough" signal to noise ratio

Possible to study the intrinsic broadening Resolve time constant ratios larger than ~ 2

On the analysis of Laplace DLTS transients

- Several inversion routines can be used.
- Clear evidence for the presence of two components with emission rate ratio ~2.

Defect properties

• From the Arrhenius plot of eT^{-2} vs T^{-1} the defect enthalpy and the apparent capture cross section is extracted:

$$\Delta H \begin{cases} (0.31 \pm 0.1) \ eV \\ \sim 0.34 \ eV \end{cases} \qquad \sigma_{app} \begin{cases} (1.2 \pm 0.4) \times 10^{-15} cm^2 \\ \sim 5 \times 10^{-14} \ cm^2 \end{cases}$$

The E_3/E'_3 levels

- Present in most samples independently on the growth techniques concentrations up to $\sim 10^{17}$ cm⁻³.
- Attributed both to V₀⁻¹ related defects and to Fe/Ni impurities².

$$e_D \sim 10^5 - 10^6 s^{-1} at 300 K$$

Important! It can be picked up during C-V measurements at 300 K [1] J. Simpson et al. J. Appl. Phys. 63, 1781 (1988) [2] Y. Jiang, et al. J. Appl. Phys. 101, 093706 (2007)

TAS principle of the measurement

 $f_T << e_{D1}(T)$ the centers in x_1 are **responding**

Xď

X,

Reverse biased junction-steady

 $f_{\rm T} >> e_{\rm D1}({\rm T})$ the centers

in x₁ are **not responding**

Capacitance and conductance measured with probing frequency $f_T(\omega_T = 2\pi f_T)$.

• Temperature is scanned.

Fixed reverse bias.

- Only majority carriers involved.
- Responding defects at the edge of the depletion region
 i.e. negligible electric field effects.

TAS spectra (not formal)

- Pure capacitance = Schottky contact: Q and V in phase
- Capacitance for a Schottky contact/junction with defects:

$$Q = \operatorname{Re}(Q_0 e^{j(\omega t - \varphi(T))}) = Q_0 \cos(\omega t - \varphi(T)) =$$

 $= Q_0 \left(\cos \omega t \cos \varphi(T) + \sin \omega t \sin \varphi(T) \right)$

Delayed defects response

By lowering the temperature it is observed:

1) a capacitance drop

2) a conductance increase.

TAS spectra (more formal)

$$\Delta C = C_{HT} - C_{LT} \propto \frac{N_T}{N_D} \frac{(1 - x_1/x_d)}{(1 - (x_1 N_T)/(x_d N_D))}$$
$$\frac{G(\omega_T)}{\omega_T} = \Delta C \frac{\frac{\omega_0}{\omega_T}}{1 + \left(\frac{\omega_0}{\omega_T}\right)^2}$$
$$\frac{\omega_0}{T_{max}^2} \propto exp\left(\frac{-\Delta H}{k_B T}\right)$$

- Cantilever effect i.e. $\Delta C \rightarrow 0$ for increasing reverse voltages.
- No limitation on the N_T/N_D ratio.
- The probing frequencies have to be comparable to the emission rate ($\gtrsim 1/\pi$ times).

On the analysis of TAS spectra: an example (1)

- Presence of leaking mechanisms may provide an increasing background in the conductance plot.
- Cantilever effect measurements particularly sensitive to the interfacial states.

(*) After R. Schifano et al. Physica B 404, 4344 (2009)

On the analysis of TAS spectra: an example (2)

• From the Arrhenius plot of $\omega_0 T^{-2}$ vs T^{-1} the defect enthalpy and apparent capture cross section is extracted (N.B. $\omega_0 \neq 2e$ in the general case).

 $\Delta H = (0.29 \pm 0.03) \text{eV}$

$$\sigma_{app} = (6 \pm 3) \times 10^{-16} \ cm^{-2}$$

(*) After R. Schifano et al. Physica B 404, 4344 (2009)

On the analysis of TAS spectra: an example (3)

- The D_X temperature dependence points to a thermally activated process.
- Ordinary DLTS measurements do not reveal any signature corresponding to D_X .

The proposed model for D_X

Two processes can occur:

1) D_X^{++} level probing \rightarrow TAS peak.

2) Electron capture $(D_X^{++} \rightarrow \Box_X^{++})$ $D_X^{++} + e$ followed by the atomic reconfiguration and the capture of a second electron $(D_X^{++} + e \rightarrow D_X^{-0}) \rightarrow$ ordinary DLTS.

Configuration coordinate diagram

• D_x negative-U defect possibly V_o.

• The high probing frequency permits to detect defects that are changing their configuration when charged (defects not so easy to detect with DLTS/L-DLTS).

TAS: main donor parameters extractions

(*) After R. Schifano et al. Physica B 404, 4344 (2009)

- Volume measurement → large reverse biasing preferred → good rectifying junction.
- Diluition limit i.e. $N_D \gg N_T$.
- Presence of electric field (Poole-Frenkel effect).
- Possible minority carriers injection.
- Rate window/transient time window limiting the range of investigated emission rates.

 $E_T - E_F$ cross region response \rightarrow small reverse biasing preferred \rightarrow not so good rectifying junction required.

TAS

- No diluition limit. No minority carriers injection. Negligible electric field in the probed region.
- Probing signal determining the investigated emission rates. Possible to detect defects with changing configurations.

How to establish the nature of the defect

- DLTS spectra is providing: σ_{app} ; ΔH ; N_T
- Comparative studies are required: annealing, implantation, electron irradiation can be used to alter N_{T} in establishing the chemical nature of the defect.

(*) After L. Vines E. Monakhov R. Schifano et al. J. Appl. Phys. 107, 103707 (2010).

Example 1: an annealing study on ZnO

E₂ involves Fe in a configuration enhanced by O-rich conditions such as Fe on Zn site

Laplace DLTS can be thought as a truly spectroscopic technique

NARODOWE CENTRUM NAUKI

UMO-2016/22/E/ST3/00553

Literature (books)

1) S. M. Sze and M. K. Lee, **Semiconductor Devices**, John Wiley & Sons (2012).

2) E.H. Rhoderick, R.H. Williams, **Metal-Semiconductor Contacts**, Oxford University Press (1988).

3) P. Blood, J.W. Orton**The Electrical Characterization of Semiconductors: Majority Carriers and Electron States,** Academic Press, London (1992).

NARODOWE CENTRUM NAUKI UMO-2016/22/E/ST3/00553

Literature (articles)

Alternative method to evaluate the series resistance

1) J. H. Werner, Appl. Phys. A 47, 291 (1998)

DLTS/L-DLTS literature/links:

- 1) L. Dobaczewski, A. R. Peaker, and K. B. Nielsen, J. Appl. Phys. **96**, 4689 (2004)
- 2) http://info.ifpan.edu.pl/Dodatki/WordPress/laplacedlts/?page_id=9#TPU
- 3) Zurich Instruments Application Note

TAS literature:

- 1) J. L. Pautrat, B Katircioglu, N. Magnea, D. Bensahel, J. C. Phister and L Revoil, Solid State Electronics **23**, 1159 (1980)
- 2) R. Schifano, E. V. Monakhov, B. G. Svensson, W. Mtangi, P. Janse van Rensburg, and F. D. Auret, Physica B **404**, 4344 (2009)