

Łukasiewicz

Instytut Mikroelektroniki i Fotoniki

Secondary Ion Mass Spectrometry

Dr hab. Paweł Piotr Michałowski

31.05.2022

- 1. Primary beam
- 2. Collision cascade
- **3.** Implantation
- 4. Sputtering and ionization
- 5. Preferential sputtering
- 6. Mixing

Fundamentals – two sources

Н						0 ₂ ⁺	P^+										He
1,0079		_															4,0026
Li	Be					Cs⁺	P⁻					В	С	Ν	0	F	Ne
6,941	9,0122											10,811	12,011	14,006	15,99	18,998	20,179
Na	Mg					Cs ⁺	P^+					Al	Si	Р	S	Cl	Ar
22,989	24,305		I									26,98	28,085	30,973	32,066	35,452	39,948
К	Ca	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39,098	40,078	44,955	47,88	50,941	51,996	54,938	55,847	58,933	58,693	63,546	65 <i>,</i> 39	69,723	72,61	74,921	78,96	79,904	83,8
Rb	Sr	Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	I	Xe
85,467	87,62	88,905	91,224	92,906	95,94	98	101,07	102,9	106,42	107,86	112,41	114,82	118,71	121,75	127,6	126,9	131,29
Cs	Ba	La	Hf	Та	W	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Ро	At	Rn
132,9	137,32	138,9	178,49	180,94	183,85	186,2	190,2	192,22	195,08	196,96	200,59	204,38	207,2	208,98	209	210	222
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt									
223	226,02	227,02	261	262	263	264	265	266									
		Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu		
		140,11	140,9	144,24	145	150,36	151,96	157,25	158,92	162,5	167,93	167,26	168	173,04	174,96		
		Th	Ра	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr		
		232,03	231,03	238,02	237,04	244	243	247	247	251	252	257	258	259	260		

O₂⁺ - electronegativity – formation of cations

Cs⁺ - decreases work function of electrons – formation of anions

Four order of magnitude difference!!!

Fundamentals – detectors

Magnetic sector

Best detection limits Quantitative analysis

Quadrupole Insulators

Time-of-Flight

Organic materials Simultaneous measurements

Fundamentals – mass interferences

7

Solutions

- High mass resolution
- Different isotopes
- Monoatomic ions

Lower sensitivity!

```
\begin{array}{ll} MRP = m/\Delta m \\ ^{28}Si - {}^{12}C^{16}O & MRP = 1246 \\ ^{28}Si - {}^{27}Al^{1}H & MRP = 2231 \\ ^{31}P - {}^{30}Si^{1}H & MRP = 3116 \\ ^{104}Ru - {}^{104}Pd & MRP = 74452 \end{array}
```


Basic applications

Detection Limits in Si

O ₂ ⁺ Prim Pos	ary Ion Beam sitive Ions	Cs⁺ Prin Neg	nary Ion Beam Jative Ions	Cs ⁺ Primary Ion Beam Positive Ions (MCs ⁺)			
Element	DL (atoms/cm ³)	Element	DL (atoms/cm ³)	Element	DL (atoms/cm ³)		
He	5E+17	Н	1E+17	Ar	1E+17*		
Li	5E+12	В	1E+15	-	-		
В	2E+13	С	1E+16	-	-		
Na	5E+12	Ν	1E+15	-	-		
Mg	5E+12	0	5E+16	-	-		
AI	2E+13	F	5E+15	-	-		
K	5E+12	Р	1E+14	-	-		
Ca	1E+13	S	1E+15	-	-		
Ti	1E+13	CI	5E+15	-	-		
Cr	2E+13	Cu	2E+15	-	-		
Mn	2E+13	As	5E+13 – 2E+15	-	-		
Fe	5E+13 – 2E+15	Ge	2E+14	-	-		
Ni	5E+14	Sb	1E+14 – 2E+15	-	-		
Cu	2E+14	Au	5E+13	-	-		
Zn	5E+15	-	-	-	-		
As	5E+16	-	-	-	-		
Мо	1E+14	-	-	-	-		
In	5E+13	-	-	-	-		
Та	5E+14	-	-	-	-		
W	2E+14	-	-	-	-		

* Assuming Ca level is below 1E15 at/cm

- Elemental composition
- No/minimal information about chemical state
- Depth profile
 - Lateral analysis + 3D
- Stability of layers
- Diffusion

Dopants and contamination

Basic applications - limitations

Detection limits SIMS measurements Depth resolution

Quantitative analysis – basic equation

$I(A) = I_P Y(A) a(A) c(A) \eta$

secondary ion current I(A) primary ion current \mathbf{I}_{P} Y(A) partial sputter yield a(A) ionization probability c(A) concentration transmission and detection coefficient η

Challenges

- Matrix effect
- High sensitivity on conditions

Quantitative analysis – elemental composition

Quantitative analysis – Dopants and contamination

Very precise measurements: $C(A) = RSF_A I(A) / I(M)$ RSF based on reference samples

Ultra Low Impact Energy SIMS (ULIE SIMS)

EXLIE (EXtreme Low Impact Energy) technology

RF Plasma for oxygen column – down to 60 eV Floating voltage for cesium column – down to 90 eV

Beam shape

Typical Gaussian-shaped beam

15 instruments!!!

Projected on square stencil

CAMECA IMS SC Ultra - limitations

Detection limits

Lateral resolution $\sim 1 \mu m$

SIMS measurements

> Depth resolution <1nm

CAMECA IMS SC Ultra – dedicated procedures

Type of procedures

- Standard/universal
- Dedicated

Standard

Applied Physics Letters **109**, 011904 (2016)

Remarks

- 250 eV impact energy
 - 45° incident angle
- Detection
- Localization?

PROBLEMS AND POTENTIAL SOLUTIONS

Problem	Potential solution	Resulting problems	Potential solution	Conclusion
Transition layer	Lower beam density	Signals intensity reduction	Higher integration time	Still a few data points per graphene
lon mixing	Lower impact energy	Signals intensity reduction	Higher integration time	Still a few data points per graphene
Preferential sputtering	Higher impact energy	Bigger ion mixing	?	Not feasible

REALISTIC SOLUTION – HIGH INCIDENT ANGEL

Angle	Data points	Transition layer	Ion mixing	Preferential sputtering	Acquisition time	Detection limits
45°	4 for graphene	Severe	Severe	Severe	5 minutes	0.2 – 1.5
75 °	30 for graphene	Negligible	Negligible	Negligible	3 hours	0.8 – 2.9

Remarks

- 250 eV impact energy
 - 75° incident angle
- Detection
- Localization!

Physical Chemistry Chemical Physics **21**, 8837-8842 (2019)

SiO₂

25

Physical Chemistry Chemical Physics **21**, 8837-8842 (2019)

Al₂O₃

Substrate type / procedure optimization

26

Łukasiewicz

IMiF

Physical Chemistry Chemical Physics **21**, 8837-8842 (2019)

Physical Chemistry Chemical Physics **21**, 20641-20646 (2019)

Position (µm)

- 51

- 36

- 29

- 22

- 15

Hexagonal boron nitride

Journal of Analytical Atomic Spectrometry **34**, 848-853 (2019)

Łukasiewicz IMiF

Ar

 H_2

Journal of Analytical Atomic Spectrometry **34**, 848-853 (2019)

Different reactor pressure

High

Journal of Analytical Atomic Spectrometry **34**, 848-853 (2019)

Low

hBN - summary

3D mode

Self-terminated mode

Journal of Analytical Atomic Spectrometry **34**, 848-853 (2019)

31

Volume 34 Number 5 May 2019 Pages 791–1036

Journal of Analytical Atomic Spectrometry rsc.li/jaas

ISSN 0267-9477

PAPER Pawet Piotr Michałowski *et al.* Secondary ion mass spectrometry investigation of carbon grain formation in boron nitride epitaxial layers with atomic depth resolution

Measurement **179**, 109487 (2021)

InGaN QWs

p-type GaN

n-type GaN

Lattice mismatch Growth temperature differences

QW InGaN (In 18%) 2.5nm QB InGaN (In 0.5%) 7nm

Standard SIMS vs ULIE-SIMS

Growth temperature 830°C

In concentration (%)

Growth temperature 905°C

In concentration (%)

Growth temperature 930°C

In concentration (%)

InGaN QWs – summary

Microscopic fluctuations

- Metallic indium precipitation
- Nitrogen bubbles

- Only one interface!
- Vacancies out-diffusion

Oxygen in GaN

Chemical Communications 55, 11539-11542, 2019 Journal of Visualized Experiments 158, e61065, 2020

Oxygen in GaN

Chemical Communications 55, 11539-11542, 2019

Journal of Visualized Experiments 158, e61065, 2020

Vertical-cavity surface-emitting laser

Remarks

- Hundreds of layers
 - 3 nm thick QWs
 - Oxidation aperture
- Difficult sample for SIMS

Intensity (cts)

Optimization

- Crater roughness higher impact energy -> mixing effect
- Primary beam deterioration higher beam density -> poor depth resolution
- Poor depth resolution where to begin?
- Is it possible to optimize?

Paradigm shift

- Mixing effect high incident angle
- Crater roughness ion polishing
- Primary beam deterioration beam service
- Poor depth resolution impact energy modulation

Mixing effect – lower impact energy -> Preferential sputtering and crater roughness

Idea

Residual

contamination

- High incident angle (75°)
- 96.5% of p || to the surface!
- Offset voltage
- No damage to the surface
- Cleaning
- Every 0.5 1 hour
- Fully automated

^o) rface!

Idea

- Safe value (15 nA)
- Every 0.5 1 hour
 - Fully automated

IMiF

A)											Fa • •	brication Top-down ap p-type subst B ~ 3.88 x 1 Varying oxid Boron segre	opro crate 10 ¹⁹ atio gatio	ach e atoms/cm ³ n steps on!			
			1		Na	me	oxi	idation	ten	nperature	time	NW diamet	er	NW heigh			
	I		1		as fabricated					$(^{\circ}C)$	(min)	(nm)		(nm)			
				as				-			-	70		270			
	1	1	1		dr	.À		dry		860	66	60		240			
					wet gate			wet		850		58		247			
		Ц					gate			gate			wet		850	5	
		1					-	- dry		725	20	53		241			
	HV 20.00 kV	curr 86 pA	mag 50 00	⊞ WD 0 x 4.2 m	de nm TL	et HFW .D 4.14 μm			— 1 µm — CNRS-LAAS								

Low incident angle collision with silicon nanowire (high etching rate)

High incident angle collision with organic material (low etching rate)

54

Remarks

- Intensity $\sim d^2$
- Very high quality
- As fabricated: 70.1 ± 0.6 nm (70)
- Dry: 59.9±0.7 nm (60)
- Wet: 57.8±0.7 nm (58)
- Gate: 52.9±0.8 nm (53)

Remarks

- Clear depletion of boron
- Affects the substrate and NWs
- Depends strongly on oxidation time
- Good SNR (>8.3 dB)
- Detection limit $5 \times 10^{16} \text{ atoms/cm}^3$ for array 1000 x 1000 NWs

Hong, W. et al. MRS Bulletin 45, 850-861 (2020).

Prof. Yury Gogotsi

https://nano.materials.drexel.edu/research/synthesis-of-nanomaterials/mxenes/

Nature Nanotechnology **17**, 1192 (2022)

Nature Nanotechnology **17**, 1192 (2022)

Remarks

- Much better quality
 - Atomic depth resolution!
 - Fully reproducible
 - Oxygen signal!!!

Synthesis with Al excess – Mathis et al. ACS Nano 2021, 15, 4, 6420–6429

Nature Nanotechnology **17**, 1192 (2022)

- Powerful characterization technique
- Possibility of measurement artifacts
- Need to plan the experiment
- State-of-the-art instrument
- Dedicated procedures (time-consuming but worth it!)
- Superior depth resolution (even atomic!)

Thank you for your attention

Pawel.Michalowski@imif.lukasiewicz.gov.pl

