Highly resistive HVPE-GaN grown on native seeds – investigation and comparison of different dopants

Motivation

Bulk highly resistive GaN

Vertically operating

Laterally operating

Undoped HVPE-GaN

H, Fe, Cr, Ni, Ti, Cl, and B below detection limits

H. Fujikura et al., Jpn. J. Appl. Phys. 56, 085503 (2017)

J.A. Freitas Jr. Et al., J. Cryst. Growth 456 (2016) 113–120

Undoped HVPE-GaN

Hall measurements in Van der Pauw configuration

Dopants in GaN

VB

Growth zone T= 1050°C

M. Iwinska et al., Appl. Phys. Express 10, 011003 (2017)

Activation energy ~1 eV

M. Iwinska et al., Appl. Phys. Express 10, 011003 (2017)

FIG. 3. Steady state photo-EPR data for 10^{19} cm⁻³ (A, square), 2.5×10^{18} cm⁻³ (D, circle), and 2×10^{17} cm⁻³ (G, star) C-doped samples for excitation (a) and quenching (b). Each point represents the relative number of defects observed after illumination with a particular wavelength. The dashed lines denote excitation and quenching threshold. Insets: Simple band model for excitation (a) and quenching (b).

Iwinska et al., Jpn. J. Appl. Phys 58, SC1047 (2019)

Increasing HCl flow above solid Mn

Iwinska et al., Jpn. J. Appl. Phys 58, SC1047 (2019)

Iwinska et al., Jpn. J. Appl. Phys 58, SC1047 (2019)

Activation energy ~1.8 eV

Measurements not possible for higher [Mn]

Increasing HCl flow above solid Fe

Increasing HCl flow above solid Fe

Seed:

FWHM = 30 arcsec

FWHM = 35 arcsec

@RT: $\rho \sim 10^7 - 10^8 \Omega cm$

Activation energy ~0.6 eV

• HVPE-GaN:Fe, [Fe] = 1×10^{19} cm⁻³ ([Si] = 2×10^{17} cm⁻³, [C] = 1×10^{16} cm⁻³)

 \bigcirc

Summary

Resistivity [<u>0</u>cm]

C doping

- p-type at high temperature
- highly resistive crystals
- High thermal conductivity

Mn doping

- n-type at high temperature
- highly resistive crystals

Fe doping:

- n-type
- slight deterioration of structural quality for high [Fe]
- control of free carrier concentration

M. Bockowski et al., J. Cryst. Growth 499, 1–7 (2018)

Acknowledgements

This research was supported by TEAM TECH program of the Foundation for Polish Science co-financed by the European Union under the European Regional Development Fund. (POIR.04.04.00-00-5CEB/17-00)

Polish National Science Centre (NCN) through OPUS projects 2017/25/B/ST5/02897 and 2018/29/B/ST5/00338

and ONR Global through program NICOP: N62909-17-1-2004

