

Homoepitaxial Growth by Hydride Vapor Phase Epitaxy Of Semi-Polar GaN on Ammonothermal Seeds. Influence of lateral growth on HVPE-GaN grown in the c-direction.

Motivation

HVPE-GaN crystals are usually grown in the [0001] direction.

Due to anisotropy of the growth semi-polar $\{10\overline{1}1\}$, $\{10\overline{1}2\}$, and $\{11\overline{2}2\}$ facets appear.

(a) Freestanding bulk GaN crystal grown by HVPE. (b) Bird-eye-view of the bulk GaN crystal. Cross-sectional schematic images of the bulk GaN crystal for (c) $(11\overline{2}0)$ and (d) $(10\overline{1}0)$ planes.

Motivation

Motivation

Seed preparation

c-plane substrates:

Seed preparation

 $(10\overline{1}1)$

 $(10\overline{1}2)$

 $(11\overline{2}2)$

	(1011)	(1012)	(1122)	(0001)
FWHM [arcsec]	59	40	33	38.52
R [m]	12	11	14	11.7

 $(10\overline{1}1)$

1		1

 $(10\overline{1}2)$

 $(11\overline{2}2)$

Three substrates with various crystallographic surfaces: $(10\overline{1}1)$, $(10\overline{1}2)$, $(11\overline{2}2)$, and reference (0001) plane substrates in one run.

Growth conditions: T=1045°C p=800mbar HCl flow=30ml/min V/III ratio=20 t=2h

Morphology and growth rate

(1011)	(1012)	(1122)
138.5	245	173.5
	(1011) 138.5	(1011)(1012)138.5245

Morphology

		seeds		
	(1011)	(1012)	(1122)	(0001)
FWHM [arcsec]	59	40	33	38.52
R [m]	12	11	14	11.7

new grown layers

	$(10\overline{1}1)$	(1012)	(1122)	(0001)
FWHM [arcsec]	34.5	46	62.5	78
R [m]	18.5	13.5	18.5	10.2

Raman spectroscopy – (0001)-plane

20

SIMS analysis

	$(10\overline{1}1)$	$(10\overline{1}2)$	$(11\overline{2}2)$
oxygen [cm ⁻³]	1·10 ¹⁹	2·10 ¹⁹	6·10 ¹⁹
silicon [cm ⁻³]	1·10 ¹⁷	7·10 ¹⁶	1·10 ¹⁷

	(1011)	(1012)	(1122)	(0001)
oxygen [cm ⁻³]	1·10 ¹⁹	2·10 ¹⁹	6·10 ¹⁹	BDL
silicon [cm ⁻³]	1·10 ¹⁷	7·10 ¹⁶	1·10 ¹⁷	1·10 ¹⁷
n [cm ⁻³]	-	2.3·10 ¹⁹	8.5·10 ¹⁹	< 1·10 ¹⁷

All semipolar layers are strongly doped by oxygen. These crystals are highly conductive n-type GaN layers.

The origin of lattice mismatch between new-grown c-plane GaN crystals and laterally grown part of the crystal is high oxygen concentration in the wings. Oxygen is the source of high free carrier concentration.

- It was demonstrated that the semi-polar GaN substrates, obtained by slicing of multiregrown ammonothermal bulk GaN, can be used as seeds for the HVPE crystallization.
- The growth rate and morphology of obtained crystals strongly depend on the crystallographic growth direction.
- The electrical as well as optical properties of the crystals grown in naturally occurring semi-polar directions are significantly different from the properties crystals grown the c-direction.
- The main source of free carrier concentration is oxygen.
- In order to reduce the effect of lateral growth on crystallization in c-direction, one should look for other growth conditions:
 - Lattice engineering.
 - Thermal field control.

This research was supported by TEAM TECH program of the Foundation for Polish Science co-financed by the European Union under the European Regional Development Fund. (POIR.04.04.00-00-5CEB/17-00)

Polish National Science Centre (NCN) through OPUS projects 2017/25/B/ST5/02897 and 2018/29/B/ST5/00338

and ONR Global through program NICOP: N62909-17-1-2004

