Recent progress in basic ammonothermal growth of gallium nitride

From crystal to substrates

As grown crystals

Substrate

Basic ammonothermal method

- > analog to hydrothermal crystallization of quartz,
- > ammonia in a supercritical state (enhanced reactivity),
- > applied pressure and temperature: **300-400 MPa and 450–600°C**,
- > mineralizers (alkali metals) increased solubility of GaN feedstock.

Ammonothermal method

Scheme of autoclave

Scheme of autoclave

Basic ammonothermal method – process stages

- 1. Heat-up
- 2. Back-etching of the seeds at lower temperature coupling of the solution with seeds
- 3. Temperature transition
- 4. Growth at higher temperature/dissolution of the feedstock at lower temperature
- 5. Cool-down

Basic ammonothermal method – growth stages

Ammonothermal GaN – limiting factor

M. Zajac et al., Progress in Crystal Growth and Characterization of Materials 64 (2018) 63–74.

Different shapes of seeds

Different shape of seeds and blocking growth in lateral direction by metal borders

Bulk GaN crystals – one growth run

- ➢ Growth in [000-1] direction ~3 months
- Increased supersaturation
- \blacktriangleright Increased growth rate from 23 µm/day to 60 µm/day
- Vertical expansion (in one run): 4mm (previously 2mm)

Preparation of seeds

After slicing After growth After grinding

Tiling technology

13

Tiling technology - examples

Production of substrates

From crystal to substrates – wafering

PRODUCT DATA SHEET

Cn0050-241-002-5-2-n100

2 inch C-plane n-type high-electron-concentration AMMONO-GaN substrate, oxygen-doped. The substrate is sliced from a mono-crystalline bulk material grown by ammonothermal method.

TECHNICAL SPECIFICATION

DESCRIPTION	UNIT	VALUE
General specification		
Orientation		(0001) C plane
Thickness	μm	500 (±50)
Dimension(s)	mm	Ø50,4 (±0,6)
Primary Flat (PF)	mm	16 (±1)
Secondary Flat (SF)	mm	8 (±1)
Bow	μm	0 (±20)
Total Thickness Variation (TTV)	μm	≤ 60

Structural specification

Etch Pit Density (EPD)	cm ⁻²	< 5 x 10 ⁴
FWHM (0002) of X-ray rocking curve, epi-ready surface at 100 μm x 100 μm slit	arcsec	~ 20
Macro defects		none

Electrical specification

Type of conductivity		n type
Carrier concentration	cm-3	~ 10 ¹⁹
Resistivity	Ω*cm	~ 10 ⁻³
Carrier mobility	cm ² /V*s	~ 150

MISORIENTATION

(measured in the center of the substrate)

M face		deg	0 (±0,25)
C face	angle δ_1	deg	0 (±0,20)
Clace	angle δ_2	deg	±0,3 (±0,20)

SURFACE PREPARATION

Front side	Epi-ready polished (RMS < 0,5 nm)
Back side	Ground

SUBSTRATE SHAPE

Note: The information given above may be subject to change at any time without notice. This leaflet is not an offer within the meaning of sales or commercial law. The AMMONO-GaN substrates are offered for sale under Ammono's General Terms and Conditions.

vw.ammono.com e-mail: sales@ammono.com tel: +48-22-814-0207

Substrate

Wafering stages – orientation of the plane

SCRIPTION		
Orientation		(0001) C plane
Thickness	μm	500 (±50)
Dimension(s)	mm	Ø50,4 (±0,6)
Primary Flat (PF)	mm	16 (±1)
Secondary Flat (SF)	mm	8 (±1)
Bow	μm	0 (±20)
Total Thickness Variation (TTV)	μm	≤ 60

MISORIENTATION

PF (M face)

m axis

'measured in the center of the substrate)

MISORIENTATION

General specification

Off M face		deg	0 (+0 25)
angle δ_1	angle δ_1	deg	0 (±0,20)
Clace	angle δ_2	deg	±0,3 (±0,20)

SURFACE PREPARATION

Front side	Epi-ready polished (RMS < 0,5 nm)
Back side	Ground

Wafering stages – slicing

General specification

DESCRIPTION	UNIT	VALUE
Orientation		(0001) C plane
Thickness	μm	500 (±50)
Dimension(s)	mm	Ø50,4 (±0,6)
Primary Flat (PF)	mm	16 (±1)
Secondary Flat (SF)	mm	8 (±1)
Bow	μm	0 (±20)
Total Thickness Variation (TTV)	μm	≤ 60

MISORIENTATION

Off M face	,	deg	0 (±0,25)
C face angle δ_1	angle δ_1	deg	0 (±0,20)
Clace	angle δ_2	deg	±0,3 (±0,20)

SURFACE PREPARATION

Front side	Epi-ready polished (RMS < 0,5 nm)
Back side	Ground

Wafering stages – excision of the substrate

General specification

DESCRIPTION	UNIT	VALUE
Orientation		(0001) C plane
Thickness	μm	500 (+50)
Dimension(s)	mm	Ø50,4 (±0,6)
Primary Flat (PF)	mm	16 (±1)
Secondary Flat (SF)	mm	8 (±1)
Bow	μm	Û (±20)
Total Thickness Variation (TTV)	μm	<u>≤ 60</u>

MISORIENTATION

Off M face		deg	0 (±0,25)
C face	angle δ_1	deg	0 (±0,20)
	angle δ_2	deg	±0,3 (±0,20)

SURFACE PREPARATION

Front side	Epi-ready polished (RMS < 0,5 nm)		
Back side	Ground		

Wafering stages – polishing

General specification

DESCRIPTION	UNIT	VALUE	
Orientation		(0001) C plane	
Thickness	μm	500 (±50)	
Dimension(s)	mm	Ø50,4 (±0,6)	
Primary Flat (PF)	mm	16 (±1)	
Secondary Flat (SF)	mm	8 (±1)	
Bow	μm	0 (±20)	
Total Thickness Variation (TTV)	μm	≤ 60	

Steps of polishing:

- 1. Grinding
- 2. Lapping
- 3. Polishing
- 4. Chemo-mechanical polishing

MISORIENTATION

Off M face		deg	0 (±0,25)
C face	angle δ_1	deg	0 (±0,20)
	angle δ_2	deg	±0,3 (±0,20)

SURFACE PREPARATION			
Front side	Epi-ready polished (RMS < 0,5 nm)		
Back side	Ground		

Am-GaN substrates – electrical properties

Material type	Conductivity type	Carrier concentration [cm ⁻³]	Carrier mobility [cm ² /Vs]	Resistivity [Ωcm]	Available size [inch]
High carrier concentration	n+ type	~10 ¹⁹	~150	10 ⁻³	1-2
Low carrier concentration	n type	~10 ¹⁸	~250	10 ⁻²	1-2
High resistivity (Mn-doped)	semi-insulating (SI)	-	-	≥10 ⁸	1-1.5

Am-GaN substrates – structural properties

Recent progress in ammonothermal method

Stress Induced Polarization Effect

Stress Induced Polarization Effect

Stress Induced Polarization Effect

Basic ammonothermal method – process stages

- 1. Heat-up
- 2. Back-etching of the seeds at lower temperature coupling of the solution with seeds
- 3. Temperature transition
- 4. Growth at higher temperature/dissolution of the feedstock at lower temperature
- 5. Cool-down

Am-GaN - topography characterization

Liu, Y. et al., Journal of Crystal Growth , 125903.

Am-GaN - topography characterization

Liu, Y. et al., Journal of Crystal Growth , 125903.

Structural uniformity - etch pit distribution

Largest pits are formed on screw dislocations, intermediate pits on mixed dislocations, and smallest on edge dislocations.

T. Sochacki et al., Japanese Journal of Applied Physics 58, SCCB19 (2019).

Summary

- The main advantage of the ammonothermal technique is the possibility to grow high-diameter crystals with excellent structural properties.
- Tiling technology is a new way to produce larger crystals.
- Solution Growth of ammonothermal GaN crystals with EPD of the order of 10^2 cm^{-2} is possible.
- Proper growth conditions, in terms of temperature distribution and controlled transition between back-etching and growth stage, allow to maintain EPD at an extremely low level – possible way for creation of new generation of seeds.

Plans for the future

- Increasing the size of seeds with and without tiling technology.
- SIPE analysis and improvement of the quality of seeds and substrates.
- > Tests of new internal configurations: crucibles, baffle.
- Numerical modeling of convection inside the autoclave.

Acknowledgements

This research was supported by TEAM TECH program of the Foundation for Polish Science co-financed by the European Union under the European Regional Development Fund. (POIR.04.04.00-00-5CEB/17-00)

Polish National Science Centre (NCN) through OPUS project 2018/29/B/ST5/00338

Thank You for Your Attention