## Automated fitting of G(r) in multiple finite size ranges

Example2

Building a core-shell model and analyzing it's G(r)

| ructure building                     | 2                                                                                                                                                                  |                                                                          |                                                                                                                                                           |
|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| nonoatomic lattice                   | cubic P (sc) zinc blende                                                                                                                                           | Grain geometry<br>sphere  cylinder                                       | start time: 7:10:48 PM<br>stop time: 7:10:54 PM                                                                                                           |
| Cd v                                 | cubic F (fcc) Cubic Iatt. prm.(Å) 6.05                                                                                                                             | cube ()<br>size (A) 30<br>N 4.9587 ~                                     | G(r) data were saved to file:<br>C:UsersisglDesktopinppackage\g(r).dat                                                                                    |
| Build                                | Modify                                                                                                                                                             |                                                                          | Delta(r) CALCULATIONS<br>start time: 7:11:21 PM<br>stop time: 7:11:22 PM                                                                                  |
| PDH RDH (r)                          | Diffraction pattern                                                                                                                                                | G(r) PDF                                                                 | zinc blende, number of nodes=77646                                                                                                                        |
| PDH                                  | Show pattern                                                                                                                                                       | Show G(r)                                                                | index 0<br>Cd<br>(x,y,z)=0,0,0                                                                                                                            |
| Show diagram                         | Parameters         Radiation         TDS           Angle(28)         Q(1/Å)           start         5         0.977072           stop         150         21.63669 | Start, step, W.F.<br>Range, step (in Angs)<br>start 0<br>stop 64.8084629 | RDH CALCULATIONS<br>start time: 7:15:34 PM<br>stop time: 7:15:34 PM<br>****** NEW STRUCTURE ********<br>zinc blende, number of nodes=4186<br>center atoms |
| Bin width 0.00390625<br>One Bin mode | step 0.01 0.001954764<br>Extrapolate to 0 🗸                                                                                                                        | step 0.01                                                                | index 0<br>Cd<br>(x,y,z)=0,0,0<br>******* NEW STRUCTURE ******                                                                                            |
| Ìlus È                               | 1m                                                                                                                                                                 | ÎAA~                                                                     | zinc blende, number of nodes=4186<br>center atoms<br>index 0                                                                                              |

Begin with building a CdSe nanocrystal. Set "biatomic lattice" and select Cd and Se ① from the drop lists. Set "zinc blende" ② structure and sphere of 30Å radius ③. Now "Build" ④ and go to "Modify" ⑤ Untill now we've had a nanocrystal with perfectly periodic lattice. We are going to split it into core and shell having slightly different lattice parameters.

| Modify ato | m positions |      |               |              |               | - 🗆 X                                                                                                                                                                                |
|------------|-------------|------|---------------|--------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            |             |      |               | Core<br>r=30 |               | Surface                                                                                                                                                                              |
| 1 2        | 345         | ₽~-  |               |              |               | ** List of shells:<br>Core r=24.000, eps=0.000%                                                                                                                                      |
| section    | 2           | %V   | р <b>/</b> р' | ε(x)         | latt.prm.mod. | maxDist: 60.1297832538306<br>** parameters after modification                                                                                                                        |
| Core       | 24          | 51.2 | 1             | 0            | 6.05          | radius: 30.12<br>lattice param.: 6.0742                                                                                                                                              |
| Surface    | 30          | 48.8 | 0.9803922     | 2            | 6.171         | rel. change (%): 0.4                                                                                                                                                                 |
|            | 6           | 4    | 0             | 6            |               | Modify     δ       Add thermal vibrations       Thermal vibrations parameters       lattice and sublattice with equal th. v.       Cd     Se       σ     0.125       0.125     0.125 |
| Del-1      | Cle         | ar 🔶 | Add+1 →       | Add+3        | === ε(x)      | 🗶 Cancel 🗸 OK                                                                                                                                                                        |

Click at Add+1 1 set core to have 24Å radius 2. The shell is up to the max. radius of the model 3. Now core and shell have approximately equal volumes 4. We expand the crystal lattice of the shell by 2% 5, then click on Modify 6 and finally on OK 7



Now we are going to compute Pair Distribution Histogram. Right click on "Bin width" box (1) to get a list of pre-defined numbers. Using "binary" values speeds up calculations and gives better accuracy when computing G(r). Select 1/256 and clear "One bin mode" (2). This also improves accuracy of G(r). Finally do the PDH calculation (3).



Now we may compare interatomic distances in the "perfect lattice" model – it is still in memory - with those in the core-shell model we have just built. Select the  $\delta(\mathbf{r})$  tab **1** and do the calculation **2**. The diagram shows theoretical i.e. expected  $\Delta(\mathbf{r})/\mathbf{r}$  curve. Right click on the diagram and save the data to the Clipboard **3**. We are going to use them later on.



It's time to compute G(r). Start with diffraction pattern. Set start, stop and step **1**. Step in diffraction pattern affects the accuracy of the Fourier transform that will be done in a moment, so set it to 0.01 or less. Go to Radiation tab **2** and select Ag radiation **3** or set it manually to something even smaller. Do the diffraction calculation **4**. Then compute G(r) **5**.

| File | Options Windows Too                                                                                                                                               | ls Help                 |                                                     |                                            |                                                                                                                                                                                   |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-----------------------------------------------------|--------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      | Open nodes file<br>Open histogram file<br>Open diffraction file<br>Open compared file<br>Open experimental file<br>Open nodes file for $\delta(r)$<br>Import data | ><br>Ctrl+F3<br>Ctrl+F4 | c) zinc blende ()<br>c) hcp P ()<br>c) prm (A) 6.05 | Grain geometry<br>sphere  cube size (Å)    | Zinc blende, number of nodes=4186<br>center atoms<br>index 0<br>Cd<br>(X, y, 2)=0,0,0<br>at num: 4186<br>PDH CALCULATIONS<br>start time: 10:15:13 PM<br>stoptime: 10:15:13 PM<br> |
|      | Save nodes<br>Save PDH, RDH<br>Save diffraction                                                                                                                   | F2<br>F3<br>F4          | Diffraction pattern                                 | G(r) PDF                                   | start time: 10:15:13 PM<br>stop time: 10:15:14 PM                                                                                                                                 |
|      | Save G(r)<br>Save delta(r)/r                                                                                                                                      |                         | how pattern 🗌                                       | Show G(r)                                  | G(r) CALCULATIONS<br>start time: 10:15:14 PM<br>stop time: 10:15:14 PM                                                                                                            |
|      | Save all Exit                                                                                                                                                     | Alt+F7                  | ameters Radiation TDS                               | Start, step, W.F.<br>Range, step (in Angs) | at num: 4186                                                                                                                                                                      |
|      |                                                                                                                                                                   |                         | λ 0.56 Custom ~<br>S(Q) with s.f.                   | start 0<br>stop 65.0462017                 | PDH CALCULATIONS<br>start time: 10:18:35 PM<br>stop time: 10:18:36 PM                                                                                                             |
|      | Bin width 0.00390625<br>One Bin mode                                                                                                                              |                         | ● Angle(28) ○ Q(1/Å)                                | step 0.01                                  | Diffraction CALCULATIONS<br>start time: 10:18:36 PM<br>stop time: 10:18:37 PM                                                                                                     |
|      | Ì.                                                                                                                                                                | ]                       | h,                                                  | <u> 1440-</u>                              | G(r) CALCULATIONS<br>start time: 10:18:37 PM<br>stop time: 10:18:37 PM                                                                                                            |

We have just calculated G(r) for the core-shell model. Save it to a file ①. In the "Save As" window which appears select "Syntetic (\*.dat)" format, not the "\*.gr" format which is the default.

| toms selection stelection static of the selection onoatomic lattice of the selection biatomic lattice of the selection of the | vubic P (sc)         zinc blende              • | Grain geometry<br>sphere  cylinder cube size (Å) N 13.223 | ••• WELCOME ••• W2 2016<br>•••••• NEW STRUCTURE ••••••••<br>21to bende, number of nodes=4186<br>center atoms<br>index 0<br>Cd<br>(x,y,z)=0.0,0<br>at num: 4185 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|-----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Build alculations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | T Modify                                        |                                                           | PDH CALCULATIONS<br>start time: 7:10:30 PM<br>stop time: 7:10:31 PM                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Diffraction pattern                             | G(r) PDF                                                  | Diffraction CALCULATIONS<br>start time: 7:10:31 PM<br>stop time: 7:10:46 PM                                                                                    |
| RDH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Parameters Radiation TDS                        | Start, step, W.F.<br>Range, step (in Angs)                | G(r) CALCULATIONS<br>start time: 7:10:48 PM<br>stop time: 7:10:54 PM                                                                                           |
| Always search center                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | λ 0.561 Ag<br>S(Q) with s.f.<br>0 I • S         | start 0<br>stop 164.883312<br>step 0.01                   | G(r) data were saved to file:<br>C:\Users\sg\Desktop\nppackage\g(r).dat                                                                                        |
| Bin width 0.001 One Bin mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Angle(2θ) Ο Q(1/Å)                              | atop 0.01                                                 | Delta(r) CALCULATIONS<br>start time: 7:11:21 PM<br>stop time: 7:11:22 PM                                                                                       |
| <u>i</u> , 3 <u>&gt;</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <u>h</u>                                        | Ĵ₩.,                                                      | zinc blende, number of nodes=77646<br>center atoms<br>index 0                                                                                                  |

Get ready for fitting. Set radius to more than twice of the radius of the model we are going to analyze ①. 70 or 80 is a good choise. Set Bin width to 0.001 ② and activate One bin mode ③. Calculate RDH ④.

| File Options Windows   Structure building Ratop   Alorns selection Ratop   biatomic lattice Fitting   Cd Se   Merge Sitze (Å)   Oueue Denoise exp. data     Colculations     PDH   RDH   Always search center   Isyer aver.   Isyer aver.   Istrat   Stop   Uneue   One Bin mode   Image    Image <th>🚱 NanoPDF64</th> <th></th> <th></th> <th>- 🗆</th> <th>×</th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 🚱 NanoPDF64                |                          |                       | - 🗆                               | × |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|--------------------------|-----------------------|-----------------------------------|---|
| Alores selection       Fitting       Ctrl = Fitting       Grain geometry         monodomic lattice       Fitting       Ctrl = Fitting       Size (A)       60         biatomic lattice       Merge       Merge RDH       Size (A)       60         Cd       Se       Extract shells       0       N       13.22.3         Queue       Denoise exp. data       G(r) PDF       G(r) PDF       Cd         Calculations       Denoise exp. data       Show pattern       G(r) PDF         RDH       RDH       Diffraction pattern       G(r) PDF         Alvays search center       Show pattern       Start, step W/F.         layer aver       1       Sign 150       216.83669         step 0.01       0.001954.768       Start, step W/F.         Bin width       0.001       Merge Extrapolate to 0       Merge Extrapolate to 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | File Options Windows Tools | Help                     |                       | ••• WELCOME •••                   |   |
| monoatomic lattice       Fitting       Ctrl+F       sphere © cylinder       intermediation         biatomic lattice       Merge RDH       size (Å) @ 0       intermediation       intermediation         Cd       Se       Biatomic lattice       asize (Å) @ 0       N       13.223       intermediation         Cd       Queue       Denoise exp. data       G(r) PDF       Show pattern       Show pattern       Show G(r)       Show G(r)         RDH       RDH       Diffraction pattern       Show G(r)       Shart, step, W.F.       Range, step (m Angs)         atrix       5       0.977072       start       0       start       0         Stop       150       21.63869       start       0       start       0         Bin width       0.0001       One Bin mode       Image       Image       Image       Image         Image       Image       Image       Image       Image       Image       Image       Image       Image       Image       Image       Image       Image       Image       Image       Image       Image       Image       Image       Image       Image       Image       Image       Image       Image       Image       Image       Image       Image                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Atoms selection            |                          | Grain geometry        | NanoPDF-64-ver.: Nov 29 2016      |   |
| biatomic lattice     Merge   Merge RDH   Extract shells   Queue   Denoise exp. data     Calculations     PDH   RDH   RDH   Always search center   Iayer aver. 1   Bin width   0.0001   One Bin mode     Image Roll     Image Roll     Calculations     PDH     RDH     Parameters   Radiation   TSD   Start, step, W.F.   Angle(26)   Q(1/A)   start   0   stop   100   0001   0001   001   001   Image Roll     Image Roll <td>monoatomic lattice O Fitt</td> <td>ing Ctrl+F</td> <td>sphere  cylinder</td> <td>zinc blende, number of nodes=4186</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | monoatomic lattice O Fitt  | ing Ctrl+F               | sphere  cylinder      | zinc blende, number of nodes=4186 |   |
| Cd     Se     Merge RDH<br>Extract shells<br>Queue     size (Å) @ 0<br>N [13:223]     Cd<br>Cd<br>Cd<br>N [13:223]       Build     Denoise exp. data       Calculations       PDH     RDH       RDH     Diffraction pattern       Show pattern       One Bin mode       Diffraction pattern       Diffraction pattern       Diffractin pattern    <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | biatomic lattice  Me       | rge                      | cube 🔿                | center atoms                      |   |
| Extract shells   Queue   Denoise exp. data     Calculations   PDH   PDH   PDH   RDH   Always search center   layer aver.   1   Bin width   0.001   One Bin mode     Image:     Image:     N   13223        (x,yz)=0.0.0              (x,yz)=0.0.0           (x,yz)=0.0.0        (x,yz)=0.0.0        (x,yz)=0.0.0           (x,yz)=0.0.0        (x,yz)=0.0.0                       (x,yz)=0.0.0              (x,yz)=0.0.0           (x,yz)=0.0.0 </td <td>Cd Se Me</td> <td>rge RDH</td> <td>size (Å) 80</td> <td>Cd</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Cd Se Me                   | rge RDH                  | size (Å) 80           | Cd                                |   |
| Queue       Denoise exp. data       Calculations       PDH     RDH     0(r)       RDH     Diffraction pattern       G(r) PDF       Show pattern       Bin width       0.0001       One Bin mode       Image: State pattern       Image: State patter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Extr                       | ract shells              | N 13.223 🗸            | (x,y,z)=0,0,0                     |   |
| Build Denoise exp. data     Calculations     PDH     RDH     Bin width     0.0001     One Bin mode     Image: Calculation to the parameters     Bin width     0.001     Image: Calculation to the parameters     Bin width     0.001     Image: Calculation to the parameters     Show pattern     Show pattern     Show G(r)     Show G(r)     Show G(r)     Show G(r)     Show G(r)     Show pattern     Show pattern   Show pattern   Show pattern   Show pattern   Show pattern     Show pattern   Show pattern   Show pattern   Show pattern   Show pattern   Show pattern   Show pattern   Show pattern   Bin width   0.001   Calculation to the pattern   Show pattern     Show pattern     Show pattern     Show pattern     Show pattern     Show patte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Qu                         | eue                      |                       |                                   |   |
| Calculations       PDH     RDH       RDH     Bin width       0.0001       Bin width       0.0001       Cone Bin mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Build                      | noise exp. data          |                       |                                   |   |
| PDH     RDH     bitfraction pattern     G(r) PDF       RDH     Show pattern     Show G(r)       RDH     Parameters     Radiation TDS       Always search center     Angle(20)     Q(1/Å)       layer aver.     1       Bin width     0.0001       One Bin mode     Image: 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Calculations               |                          |                       |                                   |   |
| RDH     Show pattern     Show G(r)       Always search center     Angle(28)     Q(1/Å)       layer aver.     1       Bin width     0.0001       One Bin mode     Image: State to 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | PDH RDH $\delta(r)$        | Diffraction pattern      | G(r) PDF              |                                   |   |
| Always search center       Angle(26)       Q(1/Å)       Start, step, W/F.         layer aver.       1       5       0.977072       start       0         start       5       0.977072       start       0       stop       160         Bin width       0.0001       0.001954764       Extrapolate to 0       001       step       0.01         One Bin mode       Image: Step in Market in | RDH                        | Show pattern             | Show G(r)             |                                   |   |
| Always search center       Angle(28)       Q(1/Å)       Range. step (n Angs)         layer aver.       1       Start       5       0.977072         stop       150       21.83868       stop       160         Bin width       0.0001       0.001954764       step       0.01         One Bin mode       Image: Always search center       Image: Always search center       Image: Always search center         Image: Always search center       Image: Always search center       Image: Always search center       Image: Always search center         Bin width       0.0001       Extrapolate to 0       Image: Always search center       Image: Always search center         Image: Always search center       Image: Always search center       Image: Always search center       Image: Always search center         Image: Always search center       Image: Always search center       Image: Always search center       Image: Always search center         Image: Always search center       Image: Always search center       Image: Always search center       Image: Always search center         Image: Always search center       Image: Always search center       Image: Always search center       Image: Always search center         Image: Always search center       Image: Always search center       Image: Always search center       Image: Always search center       Image: Alwa                                                                                                                                                                                                                                                                                                                                                                       |                            | Parameters Radiation TDS | Start, step, W.F.     |                                   |   |
| Alvays search center       Image: Search center         layer aver.       1         start       5         stop       150         stop       150         stop       150         stop       100         stop       100         stop       100         stop       160         stop       160         stop       100         Max       100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                            | Angle(20) Q(1/Å)         | Range, step (in Angs) |                                   |   |
| layer aver.     1     stop     150     21.638689     stop     160       Bin width     0.0001     0.001954764     Extrapolate to 0     0.01       One Bin mode     ✓     ✓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Always search center       | start 5 0.977072         | start 0               |                                   |   |
| Bin width         0.0001         0.001954764         step         0.01           One Bin mode         Image: Step                                                                                                                                                                                                                                                                                                                                                          | layer aver. 1              | stop 150 21.63669        | stop 160              |                                   |   |
| Bin width 0.0001 Extrapolate to 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                            |                          | step 0.01             |                                   |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Bin width 0.0001           | step 0.01 0.001004104    |                       |                                   |   |
| Inter Inc. Inc.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | One Bin mode               | Extrapolate to 0         |                       |                                   |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                            | Im.                      | Î44a                  |                                   |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                            |                          |                       |                                   |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                            |                          |                       |                                   |   |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                            |                          |                       |                                   |   |

Go to Tools $\rightarrow$  Fitting **1** 

| eneral settings                                                                                                                       | Deak parameters                                                                                                                                                                        |                                                                         |                                           |     |                                           |
|---------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------|-----|-------------------------------------------|
| max iter 1e1 max conv. 0<br>lie Data constraints Residual weights<br>1) Open experiment file<br>:\Users\sg\Desktop\nppackage\g(r).dat | PDH/RDH from buffer  PDH/RDH from buffer PDH/RDH from file Dopen PDH/RDH file Show                                                                                                     | peak shape<br>Gauss (PDH)<br>gaussian<br>scale factor                   | Gaussian const area v<br>Poly*Gauss (RDH) | ^ [ | START                                     |
| Aseline settings<br>Iff S 3 Poly 7<br>slope factor 0.000147543465 ffttable<br>D2 30 0<br>rom prev. ft From 2 Reset<br>Show baseline   | Reference model Thermal vibration model is Thermal vibration model is Thermal vibration model is Thermal vibration marameter atoms: 51878 bin width: 0.0001 mmonastomic. 0 bin mode: 1 | a/a。<br>peak width<br>pw. f ratio<br>polynomial<br>p1<br>p2<br>p3<br>p3 | 0.995212315                               | ~   | $\delta(r) = \Delta(r)/r$ Preview Preview |
|                                                                                                                                       |                                                                                                                                                                                        | Release s.f.,                                                           | p.w. •<br>From curr. fit Reset            |     |                                           |

Open (1) the G(r) you calculated a moment before for the core-shell model.

Set D/2 to 30 (2) and make it not fittable. Make Slope factor (3), scale factor,  $a/a_0$  and peak width (4) fittable. Set to 0 and deactivate all other parameters (5).

🚳 Fitlist Х \_ - 🗄 δ(r) 🖄 🖉 8 6 <u>,</u> <χ> ٨ No Xmin Xmax Xave alp alp/a₀-1 p.w. Conv 2 5 3.5 1 2 3 6 4.5 7 3 5.5 4 5 8 6.5 4 5 6 9 7.5 6 7 10 8.5 7 8 11 9.5 8 9 12 10.5 ÷ 11.5 q 10 13 Scanning list Delete row > Add row from 2 step 1 Add rows 1 START 4 55 to 3 width Clear B 0 max. value

Run a fit  $\bigcirc$  to get some starting parameters than go to Tools $\rightarrow$ Region fitting  $\bigcirc$ .

In the Fitlist window select "from 2 to 55" **1**. The model is 60 in diameter, but we don't want to go to where the peaks are very weak. Set "step 1 and width 3" **2**, click on Add rows **3** than Start fitting **4**.

Fitlist  $\times$ 0 8 δ(r) 🖄 📝 Þ - 💾 <u>,</u> <x> No Xmin Xmax Xave alp/a₀-1 Conv ~ alp p.w. 45 46.5 6.02557E+0 -4.0382E-3 1.5605E-1 7.1113E-3 44 48 45 46 49 47.5 6.02732E+0 -3.7486E-3 1.4869E-1 7.0919E-3 47 50 48.5 6.02989E+0 -3.3245E-3 1.5069E-1 3.7335E-3 46 47 48 51 49.5 6.02961E+0 -3.3703E-3 1.5392E-1 2.3808E-3 48 49 52 50.5 6.03186E+0 -2.9980E-3 1.5652E-1 2.2978E-3 49 50 53 51.5 6.03403E+0 -2.6391E-3 1.4292E-1 1.4607E-3 9.9957E-4 50 51 54 52.5 6.03564E+0 -2.3741E-3 1.4780E-1 8.6896E-4 51 52 55 53.5 6.03636E+0 -2.2545E-3 1.4766E-1 Scanning list Add row Delete row from 2 1 step STAR' Add rows 55 3 to width Clear max, value

Once the fitting is finished, and the list is filled with numbers click on " $\delta(r)$ " (1) button.

We now see the  $\Delta r/r$  diagram for the core-shell model. It is determined by scanning of calculated G(r).



We may now compare it to the theoretical curve we calculated earlier and saved to Clipboard. Right click on the diagram and select "Data from clipboard" **2** 



The diagram now shows nearly perfect match between the "theoretical" data obtained by comparing atomistic models and the "measured" data obtained from G(r).

One may apply the procedure of "scanning" of G(r) to the true **experimental** G(r). Should the obtained  $\delta(r)$  curve appear flat, the lattice of the analyzed nanoparticles could be considered perfectly periodic. But most likely the experimental  $\delta(r)$  will not be flat. That will be the evidence of non uniform structure of the crystal lattice of the measured nanoparticles. Using NanoPDF64 one may build core-shell models with multiple shells and various lattice deformations inside the shells, calculate theoretical  $\delta(r)$ -s and compare those to experimental  $\delta(r)$  data.