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I. Dislocations: basic conceptsI. Dislocations: basic concepts 

Geometry and general features of dislocations

Elastic deformation (strain) energy of 
dislocation (per unit length):

 
(6-10 eV)

G – shear modulus (G 1011 N/m2),
b – Burgers vector (2.5·1010 m),
r0 – distance beyond which elasticity 
theory applies. Usually, it is assumed that 
r/r0 104.
Core energy of a dislocation
Ecore  < 3RGTm. Ecore/Eel < 1/10 
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K = 1-, 
 - Poisson coefficient  0.3

Thus, one finds :
- Edisl mainly comes from Eel ( Gb2); 
       Edisl(screw)  0.7Edisl(edge).
- Edisl is about 10EV, EV – energy for creating 

a vacancy. 

Line tension T of a dislocation, i.e. increase 
in energy per unit length

T  Gb2



Burgers vector and Burgers circuit

b1 = b2 + b3

E1 > E2 + E3
b – unit vector 
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Grain boundaries

Boundaries formed by 
dislocations:

- edge,
- screw.

Twist boundary

Tilt boundaries:
      Small- or Low-angle
      Large-angle
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General relation

For small angles:
   = b/D.



Stacking faults and partial vectors

hcp and fcc structures 



Partial dislocations and partial vectors

Metals: Mg, Cd, Zn
Structure: hcp
Close-packed plane:  (1000)
Close-packed direction: <1120>
Unit lattice vector:   (1/3)<1120>



Some methods for revealing dislocations

• Spiral growth
• Chemical etching
• Thermal etching
• Decoration technique
• Topographic methods
• Photoelastic method 
• Electron microscopy

Literature:
- K. Sangwal, Etching of Crystals, North-Holland, Amsterdam (1987).
- D. Hull, D.J. Bacon, Introduction to Dislocations, 4th edition, 
          Butterworth-Heinemann, Oxford (2001).

J.J. De Yoreo et al., in: Advances in 
Crystal Growth, Eds. K. Sato et al., 
Elsevier, 2001, p. 361-380.

A. McPherson et al., J. Struct. Biol. 142 (2003) 32.

H.H. Tenh et al., Geochim. Cosmochim ActaJ. 64 
(2000) 2255.

Macromolecular crystals

Calcite

(100) LiF; Water + Fe(III)  ions 
(Gilnan & Johnston, 1957)

Dislocation density:      
dislocation lines intersecting 
observation plane per cm2.



Examples of dislocations

Decoration

X-ray topography

Lefaucheux et al., JCG 67 (1984) 541.

(a)

(b)



II. Sources of dislocations  II. Sources of dislocations  
and their multiplicationand their multiplication

Dislocations during growth

Mechanism I: 
Step bunching and macrosteps 

Volume diffusion 
Impurities



Trapping of mother liquor 
and impurity clusters

Dislocations

Inclusions



Misfit dislocations

Mechanism II:
Mismatch between lattice parameters 
of substrate and growth layer

Lefaucheux et al., JCG 67 (1984) 541.

Linear density of misfit  dislocations
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Epitaxy
- homo-epitaxy
- hetero-epitaxy



Diffusion of vacancies and atoms

Mechanism III 
Condensation of vacancies 
and interstitial atoms



Nucleation and multiplication 
of dislocations

Local stresses  
(e.g. thermal stresses)
- nucleation center

Stresses acting in large area
- multiplication

Mechanism IV
Internal stresses acting 
on a dislocation segment 
(Frank-Read source)



III. Mechanical properties of crystalsIII. Mechanical properties of crystals

Shear strength of single crystals
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For low elastic deformation, 
the acting shear stress  

In the entire deformation interval 
the shear stress  is a periodic 
function of a, i.e. 

Critical value of shear stress

Theoretically, for d = a: 
      G/c < 10
Experiments show that for different crystals:
      G/c = 102 – 104.

d



Movement of dislocations

Concept of glide (slip)

Tangential stress along slip direction 
(called shear stress):
 = (F/A) cos cos. 
Slip system: (100)[010].  
Primary and secondary slip systems.



Slip and dislocations

Slip occurs only in the case 
of edge dislocations



Cross slip

In crystals of metals:
Close-packed planes like (111) 
have common direction like [101].

Screw dislocation components can 
glide freely on both planes. This 
process is very fast because it does 
not require any activation energy.

-



Dislocation climb 

Climb of dislocations can be both positive 
as well as negative. This is a slow process 
because it requires an activation energy for 
the movement of atoms from crystal interior 
to or from the plane of edge dislocations.   



Characteristics of stressstrain curves

 - hardening coefficient
    or plasticity modulus
y – yield point

I – easy glide stage (small work hardening).

II – fast linear hardening stage.
III – strain softening or strain relaxation stage.



Barriers during dislocation glide

Motion of a dislocation through a crystal lattice encounters different barriers:
- periodiity of crystal lattice (Peierls-Nabarro barrier)
- stored and mobile dislocations (internal or background stresses)
- obstacles on slip planes (impurity atoms, other dislocations intersecting slip planes, 
boundaries of different types, precipitates, etc.  

Peierls-Nabarro barrier

Energy per interatomic displacement is 
the applied stress P (Peierls-Nabarro barrier)








a

x

d

Ga 


 2
sin

2

Dependence of applied stress on displacement 
of a dislocation on its slip plane 

Maximum value of stress  (i.e. Peierls-Nabarro 
stress P) has sinusoidal dependence
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with the width of dislocation core w = d/(1).

Note that P is very sensitive to arrangement of 
atoms in dislocation core, i.e. d/b, 
and taking w = 3b, for example, one has 
P  103G,
in comparison with that for ideal crystals where
P  101G.



Dislocation movement related to lattice resistance strongly depends on the 
activation energy for their lattice barrier and the activation distance.

Lattice resistance for metals is low, because:
- the activation energy is about 0.5 eV,
- their activation distance is about b/2. 
Therefore, their flow stress P strongly depends on temperature and strain rate.

Lattice resistance for covalent crystals is very high, because:
- the activation energy for their lattice barrier is as high as 5 eV.
Therefore, their flow stress P strongly depends on temperature and strain rate.
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Background internal stress due to dislocation forest:

Dislocation density:
 - dislocation lines intersecting 
observation plane per cm2.



Dislocation dynamics

Dislocation velocity v depends on:
- crystal under observation,
- applied stress,
- temperature, 
- impurities. 
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Arrhenius relation:

Power-law relation:

J.J. Gilman, W.G. Johnston (1957-1965).
Most of the work in the area: up to 1980.

H, v0, 0 and n are constants. 



IV. DislocationsIV. Dislocations  
and crystal growthand crystal growth

Dislocation
geometry  

Growth
mechanism 

Growth 
surfaces

J.J. De Yoreo et al., in: Advances 
in Crystal Growth, Eds. K. Sato et 
al., Elsevier, 2001, p. 361-380.



V. Morphology of crystalsV. Morphology of crystals

Schematic illustration of the dependence of vapor 
pressure p of a system on temperature. Solid curve 
shows the state when vapor phase I is in equilibrium with 
solid phase II, while dotted curve shows the upper limit of 
the metastable zone when precipitation of phase II occurs 
in the system. .

Metastable

Stable 

Unstable

Stability, metastability and unstability of media 

Evaporation / dissolution
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Crystal morphology (appearance)
•  Overall morphology (macromorphology)
      Equilibrium and growth morphologies
•  Surface morphology (micromorphology) 

Growth  habit of crystals
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For examination of surface morphology of crystals by different techniques, 
surface cleanliness is very important.



Schematic representation of the dependence of 
growth rate R on supersaturation  for different growth 
mechanisms. After I. Sunagawa (1981). Bull. Mineral. 
104 (1981) 81.

Growth and dissolution/evaporation occur at crystal-medium interface,
but the interface may be smooth or rough depending on the available 
supersaturation  
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Spiral growth (dislocations)

In the absence of dislocations, 2D nucleation

Polycrystalline solid, spherulites and dendrites

Increasing 3D nucleation 

Etch pits 
Dissolution



Growth morphology of a crystal composed of F{1} and F{2} faces in relation to supersaturation. 
Polyhedra {1} and {2} composed of F{1} and F{2} faces are formed at low and high 
supersaturations, respectively.

Schematic illustration of the difference in the 
development of F{1} and F{2} faces lying in the same 
zone in terms of their relative displacement rates 
under different growth conditions, leading to the (a) 
elimination and (b) persistence of F{2} face in the 
growth habit: (a) RF{1} < RF{2} and (b) RF{1}  > RF{2}.
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