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|. Dislocations: basic concepts

Geometry and general features of dislocations
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Fig. 1.2. Dislocations in a simple cubic lattice: (a) edge dislocation and (b) screw
dislocation.

Thus, one finds :
- E,, mainly comes from E_ (= Gb?);

E,(screw) = 0.7E, (edge).
- E, is about 10E,, E,, — energy for creating
a vacancy.

d K=1-v,
eage v - Poisson coefficient =~ 0.3
screw K=1

Elastic deformation (strain) energy of
dislocation (per unit length):

(6-10 eV)

G — shear modulus (G =10"" N/m?),

b — Burgers vector (2.5:-10"° m),

r, — distance beyond which elasticity
theory applies. Usually, it is assumed that
r'ry =104,

Core energy of a dislocation
E..<3R;T.. E..J/E, <110

core core

Line tension T of a dislocation, i.e. increase
in energy per unit length

T =~ Gb?




Burgers vector and Burgers circuit

Dislocation
Line — DL
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Figure 1.19 (a) Burgers circuit
round an edge dislocation with
positive line sense into the paper
(see text), (b) the same circuit in
a perfect crystal; the closure
failure is the Burgers vector.

/ﬁne s ].;lglll't‘j 1.20 _(a) F.lurgers circuit round a screw ldilsl(acalion with positive line
sense in the direction shown; (b) the same circuit in a perfect crystal; the closure
failure is the Burgers vector.

/@
line sense

. b, =b, + b,

line sense

& E >E,+E, b — unit vector

Figure 1.21 Three dislocations forming a node.



Grain boundaries
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Figure 2.3 (a) A row of etch pits formed at the boundary between two
germanium crystals. The etch pits are uniformly spaced. (b) Diagrammatic
representation of the arrangement of dislocations in the boundary revealed by
the etch pits in (a). This 1s a symmetrical pure tilt boundary which consists of a
vertical array of edge dislocations with parallel Burgers vectors of the same sign.

(After Vogel, Pfann, Corey and Thomas, Physical Review 90, 489, 1953.) . .
' Tilt boundaries:
Small- or Low-angle

Boundaries formed by Large-angle

dislocations:

- edge, 4/ Twist boundary
<

- SCrew.



Stacking faults and partial vectors

hcp and fcc structures
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Figure 1.8 Closc-packed hexagonal structure: (a) the unit cell of the lattice and

(b) ©

the hexagonal cell showing the arrangement of atoms. (b) ABAB. .. stacking

sequence of the atomic planes perpendicular to the ¢ axis

Figure 1.7 Face-centred cubic structure: (a) unit cell, (b) arrangement of atoms
in a (111) close-packed plane, (¢) stacking sequence of {111} planes
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Fig. 1.10. Arrangement of a single closest-packed layer of atoms with their centres
at points A and two types of hollows B and C above the layer.
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Fig. 1.13. Formation of Frank loops by the precipitation of (a-c) vacancies and
(d—f) interstitials in disc-shaped aggregates on the (111) plane of the fcc structure:
(a) vacancy disc, (b) Frank loop with b = %[111], (c) sweeping of Frank loop by
a Shockley partial and its transformation into a perfect loop with b = 15[11()}, (d)
interstitial disc forming a Frank loop with b = [111], (e) sweeping of the Frank
loop by one Shockley partial, and (f) sweeping of the loop by a second Shockley
partial producing a perfect loop. Note that (d) contains an extrinsic fault while (e)
contains an intrinsic fault. After Amelinckx (1979).



Partial dislocations and partial vectors

1 Metals: Mg, Cd, Zn

Structure: hcp

Close-packed plane: (1000)
SZZr Close-packed direction: <1120>
@ ) Unit lattice vector: (1/3)<1120>

Fig. 1.11. (a) Possible Burgers vectors in the close-packed structure. Filled circ-
les denote atoms in close-packed plane while open circles atoms in succeeding
close-packed planes. (b) Splitting of a complete dislocation AB into partials A«
and aB at the point O. After Kosevich (1979).

-
\\\\\\\\\\\ \‘A\\

\\‘ N ]

(2) (b) (©)

Fig. 1.12. Partial dislocations in the fcc structure: (a) Shockley dislocation, (b)
negative Frank dislocation, and (c) positive Frank dislocation. The shaded area

represents a stacking fault.



Some methods for revealing dislocations

* Spiral growth
* Chemical etching
* Thermal etching
* Decoration technique
* Topographic methods
* Photoelastic method
* Electron microscopy

‘;;;Oxso‘u m

S8 Figure 6. Example of KDP crystal surfaces
preserved by pulling through hexane. (a) shows
8 schematic of crystal structure. (b and c) Growth
hillocks on the (b) {101} and (c) {100} face
generated by dislocations emanating from the
seed crystal interface.

J.J. De Yoreo et al., in: Advances in
Crystal Growth, Eds. K. Sato et al.,
Elsevier, 2001, p. 361-380.

Calcite | H.H. Tenh et al., Geochim. Cosmochim Actal. 64
(2000) 2255.

(100) LiF; Water + Fe(Ill) ions Literature:

Gilnan & Johnston, 1957 :

(inan & fohnston. 1957 - K. Sangwal, Etching of Crystals, North-Holland, Amsterdam (1987).
Dislocation density: p - D. Hull, D.J. Bacon, Introduction to Dislocations, 4th edition,
dislocation lines intersecting Butterworth-Heinemann, Oxford (2001).

observation plane per cm?.



Examples of dislocations Lefaucheux et al., ICG 67 (1984) 541.

oot

Fig. 1. (a) Topograph of a (010) slice cut out of a KBC crystal grown at T = 29.2°C; growth duration 17 h: ref. 002; MoK a. (b)
[Topograph of a (010) slice cut out of a KBC crystal grown at T; = 56 ° C; growth duration 5 h; ref. 002; MoK a.

Fig. 1.19. (a) Symmetrical tilt boundaries and (b) a square network containing
zigzag singularities observed in decorated KCI crystals by optical microscopy. From
Amelinckx (1979).

Decoration

b

X- ra to O ra I l Fig. 6. Topggraphs of the two (010) slices cut out of an as grown KBC crystal obtained at 90 °C: (a) lower slice, ref. 200; (b) upper
slice, ref. 120; MoK a.




Il. Sources of dislocations
and their multiplication

Dislocations during growth sovs,

Mechanism |:

Step bunching and macrosteps

—_Impurities
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Figure 3.4 Important diffusional processes (volunie and surface) affecting crystal growth. (Reproduced with
permission from Rosenberger 1986.)

KINK SITES

(b)

STEPS

TERRACES

Figure 3.5 Key surface structures on an idealized crystal face: (a)
kinks: (b) steps: and (c) terraces. Adsorbed impurities at each of
these sites is illustrated. (Reproduced with permission from Mullin
1980.)

Volume diffusion

Fig.4.5a,b. Retardation of a step by strongly adsorb-
ed and poorly trapped impurity particles. (a) Sche-
matic diagram; (b) photo of the basal face of a SiC
crystal growh from vapor, in reflected light [4.21]
Magnification x 250




Trapping of mother liquor
and impurity clusters

Dislocations

(A i:’_
I?i ! /
a
/4
Fig.6.1a,b. Nonuniformity in the nutrition of a " I
macrostep rise (a) and the resulting formation of an b
b overhanging layer and a flat inclusion under it (b) Fig.6.11. Reentrant angle on a thin overhanging layer (a) and its overgrowth with the forma-

tion of dislocations (b) according to the mechanism of Figs. 3.25, 26; b is the displacement
Burgers vector

Dislocations

b Inclusion
Fig.6.3. Loss of stability by a macrostep of thickness Fig.6.12a,b. Creation of dislocations accompanying the trapping of mother liquor. (a) Buck-
h, whose rise grows according to the normal mech- ling of the overhanging layer; (b) closing up of the inclusion when macrosteps meet with
anism forming dislocations (section on ABCD); h is the step height, and b the Burgers vector

Fig.6.10. The formation of dislocations
when a foreign macroparticle is trapped by
a plate-like crystal or an overhanging
layer. The two parts of the closed-up layer
are shifted with respect to one another by
the value of the interplanar distance [6.14]

Inclusions

Dislocations



Misfit dislocations

Mechanism llI:

Mismatch between lattice parameters
of substrate and growth layer

oot
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Fig. 1. (a) Topograph of a (010) slice cut out of a KBC crystal grown at T = 29.2°C; growth duration 17 h; ref. 002; MoK a. (b)
Topograph of a (010) slice cut out of a KBC crystal grown at T = 56 °C; growth duration 5 h; ref. 002; MoK a.

Lefaucheux et al., JCG 67 (1984) 541.
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Figure 12.2. A pure misfit dislocation geometry of edge type at interface PQ

O (overgrowth) and S (substrate), with lattice spacings ao and ag, respectively [12]

Epitaxy
- homo-epitaxy
- hetero-epitaxy
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Diffusion of vacancies and atoms

Mechanism Il|
Condensation of vacancies
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Figure 3.18 Formation of a
prismatic dislocation loop. (a)
Represents a crystal with a large
non-equilibrium concentration
of vacancies. In (b) the vacancies
have collected on a close-packed
plane and in (c) the disc has
collapsed to form an edge
dislocation loop. (d) Loop
formed by a platelet of self-
interstitial atoms.

Fig. 1.13. Formation of Frank loops by the precipitation of (a—c) vacancies and
(d—f) interstitials in disc-shaped aggregates on the (111) plane of the fcc structure:
(a) vacancy disc, (b) Frank loop with b = 4[111], (c) sweeping of Frank loop by
a Shockley partial and its transformation into a perfect loop with b = %[110], (d)
interstitial disc forming a Frank loop with b = [111], (e) sweeping of the Frank
loop by one Shockley partial, and (f) sweeping of the loop by a second Shockley
partial producing a perfect loop. Note that (d) contains an extrinsic fault while (e)

contains an intrinsic fault. After Amelinckx (1979).



Nucleation and multiplication
of dislocations

Mechanism [V
Internal stresses acting
on a dislocation segment

(Frank-Read SOUFCG) Local stresses
(e.g. thermal stresses)
- nucleation center

Stresses acting in large area
- multiplication

Fig. 1.5. Frank-Read mechanism of dislocation multiplication, showing different
stages of formation of a dislocation loop from segment AB of a dislocation line.



lll. Mechanical properties of crystals

Shear strength of single crystals

(a)

(b)

Shear stress,g

\-/ Displacement, x

Figure 1 (a) Relative shear of two planes of atoms (shown in section) in a
uniformly strained crystal; (b) shear stress as a function of the relative dis-
placement of the planes from their equilibrium position. The heavy broken
line drawn at the initial slope defines the shear modulus G.

For low elastic deformation,
the acting shear stress

o=Gx/d

In the entire deformation interval
the shear stress o is a periodic
function of a, i.e.

Ga . (2%)
o =——sin| —

27d a
Critical value of shear stress
Ga
o, =——
27md

Theoretically, for d = a:
Gl/o,<10

Glo,= 102 — 10*.

Experiments show that for different crystals:




Movement of dislocations

Concept of glide (slip)

a

tv

slip plane
normal

slip plane | «°

Figure 3.1 Illustration of the
geometry of slip in crystalline
materials. Note that

(¢ + A) # 90° in general.

Tangential stress along slip direction

(called shear stress):

T = (F/A) cos¢ cosA.
Slip system: (100)[010].
Primary and secondary slip systems.

Fig. 3.1. Model of glide under shear stresses 8 in a specimen of (a) cubic and (b)

cylindrical shape.



Slip and dislocations

surface

o
slip bands

(b)

Figure 3.2 (a) Straight slip bands on a single crystal of 3.25 per cent silicon
iron. (From Hull, Proc. Roy. Soc. A274, 5, 1963.) (b) Sketch of a section across
the slip bands normal to surface shown in (a). Each band is made up of a large
number of slip steps on closely spaced parallel slip planes.
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(a) (b) (c) (d)

Figure 3.4 Movement of an edge dislocation: the arrows indicate the applied
shear stress.

Slip occurs only in the case
of edge dislocations



Cross slip

(o)

a @

A

Fig. 1.4. Different stages of the expansion of a dislocation loop by cross slip in an
fee crystal. Close-packed planes (111) and (1T1) have a common [T01] direction.
The screw component of the dislocation can glide freely on both planes. Stage (d)
shows double cross slip. From Hull (1975).

In crystals of metals:
Close-packed planes like (111)
have common direction like [101].

Screw dislocation components can
glide freely on both planes. This
process is very fast because it does
not require any activation energy.

Figure 3.10  Cross slip on the polished surface of a single crystal of 3.25 per cent
silicon iron.



Dislocation climb

QOOQPOOO 0000000 000 C%OO
OQOOPG, O 0000000 OO00OP "O0
Q00000 0000000 OO00OQPOOO
gide  OOQODO0OO O000000O OO0OPOOO
pane - OOC0O000 000BOOO OOO0POOO
000000 Q00000 OQO0PO O
000000 000000 QO000Q0O
Q0O00O% O 000000 000000
0]0]/0]0]0]0) 000000 OOO00O00O
(a) (b) (©)

Figure 3.13 Positive and negative climb of an edge dislocation. In (b) the
dislocation is centred on the row of atoms 4 normal to the plane of the diagram.
If the vacancies in the lattice diffuse to the dislocation at 4 the dislocation will
climb in a positive sense as in (a). If vacancies are generated at the dislocation line
and then diffuse away the dislocation will climb in the negative sense as in (c).

Climb of dislocations can be both positive
as well as negative. This is a slow process
because it requires an activation energy for
the movement of atoms from crystal interior
to or from the plane of edge dislocations.




Characteristics of stress—strain curves
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Fig. 3.15. Stress—strain curves of Csl crystals compressed at different temperatures.
Fig. 3.14. Typical stress—strain curve for face-centred cubic single crystals. After Urusovskaya and Demchenko (1992).

0 - hardening coefficient 0, — easy glide stage (small work hardening).
or plasticity modulus 6, — fast linear hardening stage.
T, —yield point 6, — strain softening or strain relaxation stage.



Barriers during dislocation glide

Motion of a dislocation through a crystal lattice encounters different barriers:

- periodiity of crystal lattice (Peierls-Nabarro barrier)

- stored and mobile dislocations (internal or background stresses)

- obstacles on slip planes (impurity atoms, other dislocations intersecting slip planes,
boundaries of different types, precipitates, etc.

Peierls-Nabarro barrier
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Fig. 4.1. (a) Schematic illustration of the movement of an edge dislocation, and (b)
potential energy as a function of displacement of the half plane. In (b) the dashed
curve shows the potential energy curve for a perfect lattice.

Energy per interatomic displacement is
the applied stress 7, (Peierls-Nabarro barrier)

Dependence of applied stress on displacement
of a dislocation on its slip plane

Ga . (2%)
T = sin
27d

a
Maximum value of stress 7 (i.e. Peierls-Nabarro
stress 1) has sinusoidal dependence

2G ( 27rwj
™= exp| ———
(1-v) b

with the width of dislocation core w = d/(1-v).

Note that 7, is very sensitive to arrangement of
atoms in dislocation core, i.e. d/b,

and taking w = 3b, for example, one has

.~ 103G,

in comparison with that for ideal crystals where
.~ 10'G.



Table 4.1. Extrapolated values of experimental 7p at 0 K for different
types of crystals (Gil Sevillano 1993)

System (7)o /G

fcc metals and basal slip in hep metals < 107

bece metals, prismatic slip in hep metals 5x 1073

and slip in noncompact planes in fcc metals

Ionic crystals: alkali halides 1072 -2 x 102
Ionic crystals: oxides 10°%=3 % 103
Covalent crystals 2% 107% =2 x 102

Dislocation movement related to lattice resistance strongly depends on the
activation energy for their lattice barrier and the activation distance.

Lattice resistance for metals is low, because:

- the activation energy is about 0.5 eV,

- their activation distance is about b/2.

Therefore, their flow stress 1, strongly depends on temperature and strain rate.

Lattice resistance for covalent crystals is very high, because:
- the activation energy for their lattice barrier is as high as 5 eV.
Therefore, their flow stress 1, strongly depends on temperature and strain rate.

Background internal stress due to dislocation forest:

1/2 : : o
o Gbp _ O.lep”z. Dlslqcatlon.denlsﬂy.. |
Ar(1-v) p - dislocation lines intersecting
observation plane per cmz2.



Dislocation dynamics

10' -
L\F__ wkim
10"" //,-—— C\ﬂ
WK .
RS ety &/
I /
»E CaCo; &
— 0
E 1072 /i Z W 77K
E Csl l/ » Nbim 77K
> <" £
10 / <
0oL GeME ’,l’ 'm!*
S 1032
5 é" A‘n’ Ban
10*L 400K &
o
10.I(.'I A T Lo el | i B | | e e
N . 10 102 10°
7 (MPa)

Fig. 4.5. Dislocation velocities as a function of applied stress in various crystals.
Subscript “p” denotes pure crystals, subscript “im” crystals with impurities, and
subscript “ir” irradiated. Where temperature is not indicated the data were obta-

ined at room temperature. Compiled by Nadgornyi (see Roitburd 1972).

J.J. Gilman, W.G. Johnston (1957-1965).
Most of the work in the area: up to 1980.

Dislocation velocity v depends on:
- crystal under observation,

- applied stress,

- temperature,

- impurities.

Arrhenius relation:
H(r)
ke, T

vV =1y, exp

Power-law relation:
n

_ T
Ty

H, v,, 7, and n are constants.



IV. Dislocations

J.J. De Yoreo et al., in: Advances
in Crystal Growth, Eds. K. Sato et
al., Elsevier, 2001, p. 361-380.

and crystal growth

Nonsingular
(110) face
C (010} Face growth / Face growth
direction P direction
| 4o F —_— T I T
1 (11%3?0) at®  Step motion
] bl el
I 11T S
I [ ] Singular (100) * face /
1 1] |~ Burgers
a I ! ] vector Figure 4.2. Cross-sectional view of the faces of different orientations of a simple cubic
- crystal [3].
===

\
)
)

Fig. 1.2. Dislocations in a simple cubic lattice: (a) edge dislocation and (b) screw
dislocation.

Figure 4.3. Classification of different types of faces of a simple cubic crystal according to
the Periodic Bond Chains (PBC): F (flat), $ (stepped) and K (kinked). From Ref. [6].

'80x30m

Figure 6. Example of KDP crystal surfaces
preserved by pulling through hexane. (a) shows
schematic of crystal structure. (b and ¢) Growth
hillocks on the (b) {101} and (c) {100} face
generated by dislocations emanating from the
seed crystal interface.




V. Morphology of crystals

Stability, metastability and unstability of media
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Evaporatian / dissolution

Stable

Solute concentration c——>

Vapor pressure p
ko)

T, T,
Temperature T

Crystal morphology (appearance)

* Overall morphology (macromorphology)
Equilibrium and growth morphologies

* Surface morphology (micromorphology)

Schematic illustration of the dependence of vapor
pressure p of a system on temperature. Solid curve
shows the state when vapor phase | is in equilibrium with
solid phase Il, while dotted curve shows the upper limit of
the metastable zone when precipitation of phase Il occurs
in the system. .

Growth habit of crystals

For examination of surface morphology of crystals by different techniques,
surface cleanliness is very important.




Growth and dissolution/evaporation occur at crystal-medium interface,
but the interface may be smooth or rough depending on the available
supersaturation

A
_Sm.OOth S Polycrystalline solid, spherulites and dendrites
y c
interface 5 | R
. . i b= ncreasing 3D nucleation
Dislocation ! ' o
x i Nucleation 2
@ n In the absence of dislocations, 2D nucleation
b [0}
o % Spiral growth (dislocations)
£ | ___
= Etch pits
e Dissolution
o

nucleation : Schematic representation of the dependence of
o* ok growth rate R on supersaturation o for different growth

. mechanisms. After |. Sunagawa (1981). Bull. Mineral.
Supersaturation o 104 (1981) 81.




F{1} F{1}

| S

Schematic illustration of the difference in the
development of F{1} and F{2} faces lying in the same
zone in terms of their relative displacement rates
R under different growth conditions, leading to the (a)
F{1} elimination and (b) persistence of F{2} face in the
growth habit: (a) Re;, < Rg, and (b) R, > Rep,

F{1}

R (10 m/s)

100 T T T T
F{1}
751
50
{11 +{2}
Growth morphology of a crystal composed of F{1} and F{2} faces in relation to supersaturation.
25 Polyhedra {1} and {2} composed of F{1} and F{2} faces are formed at low and high
supersaturations, respectively.
0
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