

Crystal Growth: Physics, Technology and Modeling

Stanisław Krukowski Institute of High Pressure Physics PAS 01-142 Warsaw, Sokołowska 29/37 e-mail: <u>stach@unipress.waw.pl</u>

Zbigniew R. Żytkiewicz

Institute of Physics PAS 02-668 Warsaw, Al. Lotników 32/46 E-mail: <u>zytkie@ifpan.edu.pl</u>

MBE of nitride semiconductors

24 March 2025

http://www.unipress.waw.pl/~stach/cg-2024-25

Molecular beam epitaxy of nitride semiconductors

Zbigniew R. Zytkiewicz Institute of Physics, Polish Academy of Sciences Al. Lotnikow 32/46, 02-668 Warszawa

Group of MBE Growth of Nitride Nanostructures http://info.ifpan.edu.pl/Dodatki/WordPress/mbe2en/

Molecular beam epitaxy of nitride semiconductors

Outline

1. Introduction

- 2. Overview of surface processes during crystal growth
- Specific case MBE of nitride semiconductors, How surface phenomena can be observed in situ by:
 - Reflection High Energy Electron Diffraction (RHEED)
 - Laser Reflectometry (LR)
 - line-of-sight Quadrupole Mass Spectroscopy (QMS)
 - What atoms do on the surface ?
- 4. PAMBE growth of GaN nanowires5. Summary

Why nitride semiconductors ?

(Al,Ga,In)N:

- very broad range of E_g (InN 0.7 eV AlN 6 eV)
- the only one material system that covers so large E_{g} range
- resistant to main chemicals and high temperature (applications in harsh environment)
- large breakdown voltage (GaN 3×10⁶ V/cm) high power electronics
 - good thermal conductivity

High power/RF electronics

Water processing

Data storage

Solid State Lighting

Medical treatment

High resolution printing

What Molecular Beam Epitaxy (MBE) means ?

- very low residual gas pressure ~10⁻¹¹ Tr (efficient UHV pumps and LN₂ filled cryopanel) → high purity of crystals (low doping)
- pressure inside the beam ~10⁻⁵ 10⁻⁶ Tr
 - mean free path of species inside the beam
 5 m >> source substrate distance
 - → ballistic flow of species; shadowing effect
 - growth environment transparent for light, X-rays, e-beam, etc.
 - > many in-situ diagnostic tools available

Nitrogen sources in nitride MBE

N_2 molecule very stable and chemically inactive \otimes

ammonia (NH₃) MBE

gas NH_3 injector

thermal cracking of NH₃ molecule at the hot substrate surface; N atoms and hydrogen released; requires high growth temperature (usually ~900 -1000°C); similar mechanism as in MOVPE

nitrogen plasma emits atomic N and excited N₂^{*} species; MBE growth at much lower T possible K. Klosek et al. Thin Solid Films 534 (2013) 107

Plasma-Assisted MBE (PAMBE) Riber Compact 21

TOOLS:

- optical pyrometer
- RHEED (k-Space)
- laser reflectometry
- LayTec EpiCurve TT (temperature, wafer curvature)
- line-of-sight quadrupole mass spectrometry (QMS)

SOURCES:

- Ga x2
- Al x2
- In
- RF nitrogen source
- Si x2
- Mg
- Fe

Crystal growth by MBE

crystal growth = two step process

- 1. bulk material transport towards the growth interface
- 2. surface phenomena

As always in two-step processes, the slowest step determines the overall growth kinetics

Usually (for sure in MBE ©) the growth kinetics is limited by the rate of surface processes

How crystals grow ? Surface phenomena

Ø - bonding energy of two cubes terrace site - Ø weakly bonded; high probability of desorption step site - $2 \times Ø$ kink at the step - $3 \times Ø$ step vacancy - $4 \times Ø$ terrace vacancy - $5 \times Ø$ Is it the best site ? low concentration; hard to create e.g. by thermal decomposition

negligible contribution to the growth !!!

most effective - kinks at the steps operative if atoms (adatoms) are mobile enough on the surface

step-flow if the mean diffusion length

$$L_{diff} = \sqrt{D \times \tau} > terrace width$$

diffusion coefficient lifetime on the surface

How crystals grow ? Surface phenomena

most effective - kinks at the steps operative if atoms (adatoms) are mobile on the surface

step-flow if the mean diffusion length

 $L_{diff} = \sqrt{D \times \tau} > terrace width$

otherwise – 2D nuclei form and island growth takes place (2D nuclei stable if larger than critical size)

Sources of surface steps

surface miscut

screw dislocations on flat surface

lecture #2 by prof. M. Boćkowski

steps formed intentionally by surface miscut

 $L_{terrace} = c/_{2 tg(\alpha)}$

2D nuclei on perfect, flat surface

Surface steps are always present on the surface

Specific case - MBE of GaN

- typical growth conditions in "classic" MBE growth of III-V's (GaAs, InAs, InP, ...)

- overpressure of volatile group V species
- metal flux controls growth rate

Ga flux = 3 nm/min → Ga flux that under N-rich conditions and low T (no Ga desorption) would cause GaN growth with the rate of 3 nm/min

K. Klosek et al. Thin Solid Films 534 (2013) 107

Specific case - MBE of GaN

AFM image of epilayer surface ($10 \times 10 \ \mu m^2 \text{ area}$) $T_{growth} = 720^{\circ}C$ $rms = 18.3 \ nm$

10.0 um

T_{growth} = 770°C rms = 3.2 nm

T_{growth} increases -- <u>mobility</u> of Ga adatoms increases - more smooth surface

MBE of GaN - growth rate measurements

RHEED - Reflection High Energy Electron Diffraction

RHEED commonly used to visualize:

- surface reconstruction
- quality of the surface (rough/smooth)

Si(001) RHEED patterns - sputter-cleaned surface

MBE of GaN - growth rate measurements

RHEED - measurement of "microscopic" growth rate LR - measurement of "macroscopic" growth rate

Simple Ga-desorption experiment; laser reflectometry

T_{Ga} 800C

Simple Ga-desorption experiment; laser reflectometry

more Ga

Simple Ga-desorption experiment; laser reflectometry

Simple Ga-desorption experiment; RHEED

How to control amount of Ga during growth of GaN ?

periodic growth interruptions for *in-situ* control of Ga-coverage

Ga flux slightly corrected (if needed) to keep 2ML of Ga on the surface

Ga desorption kinetics as surface thermometry

- R. Mata et al. JCG 334 (2011) 177
- 1. exposure of Si(111) to 0.4 ML/s Ga flux for 10 sec
- 2. RHEED used to measure recovery time of 7×7 Si(111) reconstruction

in reality:

- 1. RHEED signal decay measured vs. heater power
- 2. surface T measured by a thermocouple bonded to the substrate in order to convert heater power into surface T

comments:

- good tool to get run-to-run reproducibility of the surface substrate T (most important for grower)
- 2. absolute value of substrate surface T measured ???

Specific case - MBE of GaN

GaN nanowires (NWs)

AFM image of epilayer surface $(10 \times 10 \ \mu m^2 \text{ area})$

Growth of NWs in vapor-liquid-solid (VLS) mode

- <u>advantages:</u>
- fast growth
- relative easy selective area growth
- size of droplet determines diameter of NW
- D^oX = 3.472 eV for all cases

(typical for strain-free GaN layers)

PL intensity much lower for GaN NWs grown with Ni – unintentional doping and more defects

much better optical properties of GaN NWs grown catalyst-free

How nanowires (NWs) do form ?

Ristic et al. JCG 310 (2008)

Two steps in growth of NWs:

- self-induced nucleation (Volmer-Weber mechanism): Ga adatoms migrate on the surface or desorb until stable critical nuclei are formed
- 2. growth of NWs by incorporation of Ga atoms from substrate surface around NW and directly from the Ga beam

Our procedure of growth of GaN NWs on Si(111)

- Si-N bond 4.5 eV/bond (Ga-N bond: 2.17 eV/bond)
- competition of N bonding with Si and Ga; uncontrolled nitridation of the substrate

A. Wierzbicka, et al. Nanotechnology 24 (2013) 035703

Unique feature of GaN NWs on non-crystalline substrates

NWs always perpendicular to the surface of Si (as opposed to VLS-grown NWs)

NW growth on $Si \equiv NW$ growth on amorphous layer

A. Wierzbicka et al. Nanotechnology 24 (2013) 035703 M. Sobanska et al. J. Cryst. Growth 401 (2014) 657-660

in-situ monitoring of NWs formation: QMS

stage I: incubation period (no stable nuclei formed)
stage II: nucleation of GaN (creation of supercritical nuclei); density of stable nuclei increases
stage III: axial growth of NWs; density of NWs saturates; cooperative effects (exchange of Ga between neighboring NWs) lead to uniform lengths of NWs

M. Sobanska et al. Nanotechnology 27 (2016) 325601

Transition from spherical cap to NW shape

M. Sobanska et al. Nanotechnology 27 (2016) 325601

shape change

critical size:

r = 5 nm

h = 2 nm

(1100

2 nm

spherical cap

GaN NWs on $a-Al_xO_y$

critical size of shape change on a-Al_xO_y: $r = 7.2 \pm 2.2 \text{ nm}$ $h = 12.3 \pm 2.3 \text{ nm}$

> larger critical size for shape transition on a-Al_xO_y that on Si

GaN NWs on nitridated Si

anisotropy of surface energy is the driving force for shape transition

(1100)

NW shape

SixNy

V. Consonni et al. PRB 83 (2011)

GaN NWs: non-crystalline vs. crystalline substrate

in-situ monitoring of NWs formation: QMS

stage III

elongation period; density of NWs saturates; collective phenomena

collective effects: exchange of Ga between NWs (desorption from sidewalls of longer NWs, capture by shorter ones) leading to uniform lengths of NWs Sabelfeld et al. APL 103 (2013) 133105

 $1 \mu m$

Growth of GaN NWs: N- or Ga-limited?

growth parameters: Φ_N = 10.2 nm/min; Φ_{Ga} = 5.0 nm/min

 $V_{qr} \sim 10.5 \pm 0.5$ nm/min

 V_{qr} ~ 10.3 \pm 0.5 nm/min

 $V_{gr} \sim 10.7 \pm 0.5$ nm/min

\rightarrow growth rate limited by N flux

\rightarrow the same conclusion reported for GaN NWs grown on Si(111)*

*S. Fernández-Garrido, et al. Nano Lett. 15 (2015) 1930

 \blacktriangleright Ga adatoms being closer to the NW top than their diffusion length $\Lambda_{m\text{-}GaN}$ contribute to the axial growth

Iocally Ga-rich conditions may be created at the NW top facet despite overall N-rich conditions

▶ at this stage diffusive Ga flux from the substrate not important

M. Sobanska et al. Nanotechnology 27 (2016) 325601

PAMBE growth of GrN NWs: N- or Ga-rich?

- Fernandez-Garrido et al. Nano Lett 13 (2013) 3274 Φ_N=10.8 nm/min 20 10 30 Impinging Ga flux (nm/min)
 - Ga diffusion length (~40 nm*)
- overall N-rich conditions
 - locally (at the NW top facet) Ga-rich conditions due to diffusion of Ga along the NW sidewalls

Selective area growth (SAG) of GaN NWs

disadvantages of self-assembled NW growth:

- 1. control of NW density difficult
 - easier in VLS growth mode if positions of Au (or Ga) droplets from which NW grow can be ordered
- 2. random positions of the NWs on the substrate (due to a random nature of the nucleation process)

mask nucleation layer

in SAG:

- masked substrate with a pattern created (by lithography and etching) to open the mask-free areas with exposed nucleation layer
- growth conditions needed to nucleate NWs in the openings in the mask, while nucleation on the mask surface is prohibited
- proper choice of substrate and mask material needed

H. Sekiguchi et al., IWNS 2008 Montreux, Switzerland

How to adjust the growth conditions for SAG?

study nucleation kinetics of NWs on various materials to find the best suitable mask/substrate pair

→ much more efficient nucleation of GaN NWs on a-Al_xO_y than on SiN_x

M. Sobanska, et al. Cryst. Growth Des. 16 (2016) 7205-7211

Growth of GaN on Si with SiN_x mask and $a-Al_xO_y$ stripes

- Si substrates covered by 15 nm thick a-Al_xO_y film deposited at low temperature by ALD
- ~15 nm thick SiN_x deposited by PECVD
 @ T = 300°C
- e-beam lithography + RIE etching to open windows in the SiN_x mask

pure Selective Area Growth in the SiN_x/a-Al_xO_y system
GaN NWs formed selectively on a-Al_xO_y stripes
no GaN nucleation on SiN_x

M. Sobanska, et al. Cryst. Growth Des. 20 (2020) 4770-4778

Some results of GaN NW SAG growth experiments

CL @ RT (A. Pieniążek)

yield on e-beam processed substrate still too low
 processing of the substrates by e-beam lithography and RIE etching must be improved

... and edge growth in SAG

longer GaN NWs close to the edge of the stripe

M. Sobanska, et al. Cryst. Growth Des. 20 (2020) 4770–4778

Surface Ga diffusion and edge growth in SAG

M. Sobanska, et al. Cryst. Growth Des. 20 (2020) 4770–4778

NW LED design

- part of emitted light lost by absorption in the substrate
- nonlinear electrical GaN/SiN_x/Si junction

- graphene transfer from the host substrate complicated; small area single cm²
- nucleation on graphene very difficult
- AIN nucleation layer needed high series resistance

NW LED with bottom electrode

- high electrical conductivity and ohmic contact to GaN required
- high optical reflectivity desirable
- stable at MBE growth conditions
- pure metals (W, Mo, Ti, ...) react with Ga
 - ZrN, TiN, ...

NW LED with bottom electrode - flexible electronics

- high electrical conductivity and ohmic contact to GaN required
- high optical reflectivity desirable
- stable at MBE growth conditions

...

buhlergroup.com

NW LED with bottom electrode

S. Tiagulsky, et al. Nanoscale 2025

Conclusion

in-situ observation of the growth interface is crucial for understanding the growth processes and finding efficient ways of their control

Many thanks to my co-workers

dr hab. Marta Sobańska

dr Ola Wierzbicka

mgr Kamil Kłosek

mgr Karol Olszewski

mgr Giorgi Tchutchulashvili

and many others ...

Top-down or bottom-up (growth) ?

Q. Li, et al. Optics Expr. 19 (2011)

- 1. planar epitaxial growth of p-GaN/n-GaN
- 2. 1 µm diameter silica spheres mask
- 3. plasma etching (b)
- 4. very long wet etching in KOH-based solution
- significant damage after RIE (strong YL luminescence)
- PL redshift due to strain release
- wet etching rate dependent on composition

Top-down or bottom-up (growth) ?

B. Damiliano, et al. Nano Lett. 16 (2016) 1863

- 1. planar epitaxial growth of GaN/InGaN
- 2. SiN mask deposition (in-situ)
- Selective Area Sublimation
 900°C (b e)

- high-quality planar growth still required
- In-Ga interdiffusion during the SAS process
- role of threading dislocations ?
 only a few % of NWs with TDs (geometrical factor)